

DIMS Architecture Design v 2.10.0

	1. Scope
	1.1. Identification

	1.2. Document overview

	2. Referenced documents

	3. System-wide design decisions
	3.1. Background on Existing Core Components

	3.2. Software Development Methodology

	3.3. Use of Open Source components

	3.4. Summary of High-Level System Architecture Delineation

	4. DIMS architectural design
	4.1. System Software Architecture

	4.2. Internal Communications Architecture

	4.3. Concept of execution

	4.4. Interface design

	4.5. File and Database Design

	4.6. Database Management System Files

	4.7. Non-Database Management System Files

	4.8. Human-Machine Interface

	5. DIMS detailed design
	5.1. Hardware Detailed Design

	5.2. Software Detailed Design

	5.3. Internal Communications Detailed Design

	5.4. External Communications Detailed Design

	6. Requirements traceability

	7. Notes
	7.1. Glossary of Terms

	7.2. List of Acronyms

	8. License

Contact

Section author: Dave Dittrich <dittrich @ u.washington.edu>

Section author: Stuart Maclean <stuart @ apl.washington.edu>

1. Scope

1.1. Identification

This Architecture Design document (version 2.10.0) describes
the proposed high-level design of the
Distributed Incident Management System (DIMS) architecture. Its
purpose is to provide the reader with an overview of the major system
components of the former Public Regional Information Security Event
Management (PRISEM) system, the Operational Security Trust (Ops-Trust)
portal system (now Trident), and the components of the DIMS dashboard front-end
and data processing back end that integrate these two existing
systems.

DIMS is funded by the Department of Homeland Security under contract HSHQDC-
13-C-B0013. For more information, see the documents
DIMS Operational Concept Description v 2.9.0 [https://dims-ocd.readthedocs.io/en/latest/index.html#dimsoperationalconceptdescription],
DIMS System Requirements v 2.9.0 [https://dims-sr.readthedocs.io/en/latest/index.html#dimssystemrequirements], and other documents
referenced in Section Referenced documents.

The scope of this document is limited to description of the
architectural elements, data types (and their sources, volumes, and
retention periods), data flows, user interfaces, etc. It is assumed
the reader is familiar with the underlying motivations for the system
as described in the DIMS Operational Concept Description v 2.9.0 [https://dims-ocd.readthedocs.io/en/latest/index.html#dimsoperationalconceptdescription]
and DIMS System Requirements v 2.9.0 [https://dims-sr.readthedocs.io/en/latest/index.html#dimssystemrequirements] documents.

Attention

This document was originally written in the months after the
initial start of period of performance of the DIMS project
contract, which was September 13, 2013. Things have changed
over the Base Period, Option Period, and two extensions.
This, and all related DIMS documents, were originally written
as forward-looking documents using future tense. This, and
all related project documents, are undergoing updates
to reflect changes that have occured (including switching
to past tense and renaming as necessary) on a best-effort
basis. Keep this in mind while reading this document, and
feel free to report any errors you encounter by filing
a bug report or issuing a pull request.

1.2. Document overview

The structure of this document has been adapted principally from MIL-STD-498
(see Section Referenced documents). Following this section are:

	Section Referenced documents lists related documents.

	Section System-wide design decisions describes the system-wide
decisions that guide the design of the Distributed Incident
Management System.

	Section DIMS architectural design describes the DIMS architectural
design.

	Section DIMS detailed design provides details on the hardware
and software subsystem design.

	Section Requirements traceability describes traceability back
to requirements expressed in the DIMS System Requirements v 2.9.0 [https://dims-sr.readthedocs.io/en/latest/index.html#dimssystemrequirements]
document.

	Section Notes provides an alphabetical listing of acronyms and
abbreviations used in this document.

	Section License includes the copyright and software license under
which DIMS is being released.

2. Referenced documents

	DIMS System Requirements v 2.9.0 [https://dims-sr.readthedocs.io/en/latest/index.html#dimssystemrequirements]

	DIMS Operational Concept Description v 2.9.0 [https://dims-ocd.readthedocs.io/en/latest/index.html#dimsoperationalconceptdescription]

	dimsdockerfiles:usingdockerindims

	DIMS Test Plan v 2.9.1 [https://dims-tp.readthedocs.io/en/latest/index.html#dimstestplan]

	HSHQDC-13-C-B0013, “From Local to Gobal Awareness: A Distributed Incident Management System,” Draft contract, Section C - Statement of Work (marked up version)

	MIL-STD-498, Military Standard Software Development and Documentation,
AMSC No. N7069, Dec. 1994.

	D. Dittrich. PRISEM Analyst’s Handbook, December 2013.

	D. Dittrich. PRISEM System Administration Handbook, December 2013.

	W. Gragido. Understanding Indicators of Compromise (IOC) Part I, October 2012. http://blogs.rsa.com/will-gragido/understanding-indicators-of-compromise-ioc-part-i/

	M. Hamilton and D. Dittrich. An overview of the Public Regional Information Security Event Management Project, December 2013.

	E. Hutchins, M. Cloppert, and R. Amin. Intelligence-Driven Computer Network Defense Informed by Analysis of Adversary Campaigns and Intrusion Kill Chains. In 6th Annual International Conference on Information Warfare and Security. Lockheed Martin Corporation, December 2011. http://www.lockheedmartin.com/content/dam/lockheed/data/corporate/documents/LM-White-Paper-Intel-Driven-Defense.pdf

	H. Khurana, J. Basney, M. Bakht, M. Freemon, V. Welch, and R. Butler. Palantir: A Framework for Collaborative Incident Response and Investigation. In IDtrust ’09: Proceedings of the 8th Symposium on Identity and Trust on the Internet, pages 38–51, New York, NY, USA, April 2009. ACM. http://middleware.internet2.edu/idtrust/2009/papers/05-khurana-palantir.pdf

	R. S. C. Ieong. FORZA - Digital forensics investigation framework that incorporate legal issues. Digital Investigation, 3(Supplement-1):29–36, 2006. http://www.dfrws.org/2006/proceedings/4-Ieong.pdf

	Mandiant. Using Indicators of Compromise to Find Evil and Fight Crime, August 2011. http://www.us-cert.gov/GFIRST/presentations/2011/Using_Indicators_of_Compromise.pdf

	The Mitre Corporation. Standarizing Cyber Threat Intelligence Information with the Structured Threat Information eXpression (STIX), 2012. http://makingsecuritymeasurable.mitre.org/docs/STIX-Whitepaper.pdf

3. System-wide design decisions

3.1. Background on Existing Core Components

To understand what the DIMS system is intended to provide, it is important to
understand its role in the context of distributed and collaborative incident
response. DIMS leverages the capabilities of several existing systems each
provide key functions necessary for incident response, but are not presently
designed to work together. Integrating these capabilities will result in an
increase in the capacity to respond.

Figure Overview of DIMS System depicts a high-level diagram of the dataflows
between DIMS and related system.

[image: _images/Overview-DIMS-system.png]
Overview of DIMS System

DIMS provides a user interface layer on the front end, as well as a data
processing layer on the back end, that integrates with several existing
systems.

	The first is the Security Information Event Management (SIEM) system at the
core of the PRISEM project, and the technologies associated with it to
perform behavioral detection of malicious activity from network flow data and
support forensic analysis of historic data to respond and recover from
attacks that evade detective mechanisms. This system collects and processes
tens of millions of security related events (and network flow records, if
desired) and supports a collective approach to responding and recovering from
security events.

	The second system is the Ops-Trust portal system, used by a community of
several hundred computer security professionals with operational and research
roles in industry, government, and academia. This system is primarily
designed to facilitate trust group maintenance and communication to deal with
emerging threats and events of international scope. (It is now in its
second incarnation, as the Trident system).

	The third are the suite of “big data” style open source unstructured data
storage, log processing, log visualization, and other tools that are part of
the ELK stack, MozDef, and CIF.

	Additional tools that can be used for visualization can be similarly
integrated (such as Mal4s), by building them into the system deployment
infrastructure like any other components used in DIMS. This type of
framework model, if generalized, allows any of a number of open source
security tools to be made available to the incident responder.

The DIMS software system will bring these systems together into a collaborative
environment for shared analysis and shared response of shared threats, both
within a regional trust community, as well as across multiple such trust
communities in other regions. Through vertical sharing of indicators of
compromise from US-CERT to the regional level, and lateral sharing across
regional entities, the objective is to scale actionable information sharing to
state, local, territorial, and tribal (SLTT) government entities across the
United States, and extend the sharing to international trust groups who make up
the global fabric of the internet.

[image: _images/stix-dataflows-v1.png]
Data Flows Between Stakeholders

Figure Data Flows Between Stakeholders depicts the data flows
between a subset of the stakeholders who will be using the DIMS
software system. The solid lines depict data that has the highest
degree of sensitivity and trust, often being transmitted in
un-redacted form (possibly tagged with TLP indicators for most
restricted sharing). The dashed lines depict data flows that are at
lower levels of trust, and may be transmitted only in redacted form
(possibly tagged with TLP indicators for the least restricted
sharing). The type of data shared may be structured IOC and
Observables in STIX format, Course of Action information in either PDF
or structured format, Situational Awareness Report (SITREP)
documents that describe observed campaign level activity at a high
level, possibly with structure data containing IOCs or Observables to
assist recipients in searching for related activity, and incident
reports that may similarly be a combination of human-readable PDF and
machine-readable IOCs/Observables. There are two types of data that
will be shared in most use cases: high-frequency, high-volume,
automated data feeds of reputation data and IOCs/Observables coming
from analytic and research groups; low-frequency, low-volume, manually
triggered bundles of IOCs/Observables, Course of Action information,
and/or high-level SITREPs for specific
incident-level up to campaign-level activity.

[image: _images/DIMS-Trident-stack-v1.png]
DIMS and Trident Component Stack

The DIMS software,
layered on top of the Trident portal system as illustrated in
Figure DIMS and Trident Component Stack, will facilitate
production of these reports and transmission/reception of structure
data files and facilitate automated processing of the structure data
files to pre-process data for an analyst to consume when ready, rather
than forcing the analyst to do a lot of work manipulating files,
processing their contents, and manually entering data into report
generation front ends in web based portals. (See also Figure
DIMS and Trident Component Interfaces.)

Figure PRISEM Initial Deployment and Flows depicts the high-level
data flow relationships for the Security Information Event Management
(SIEM) system and Botnets detector subsystem used in the PRISEM
project as it was initially deployed in 2009. The City of Seattle (the
first and to this date largest participant organization) has multiple
security devices sending event logs into the system. It also
generates NetFlow V5 records that are processed by real-time
detectors, and archived for historical query capability. The logs are
collected one site, then forwarded to the central SIEM for processing
at the University of Washington.

[image: _images/cos-hw-deployment-v3.png]
PRISEM Initial Deployment and Flows

Figure Netflow Architecture depicts a prototypical NetFlow
collection and archiving model. The PRISEM system uses a slightly
modified version of this model. Unlike the diagram in Figure 4, the
PRISEM system processes NetFlow records as they enter the NetFlow
Collector in the center of the diagram, sending copies to the Botnets
system detectors. One of the processes receiving these records
performs the storage task, however it converts the NetFlow V5 records
to SiLK format before storing them. The SiLK tool suite is then used
to process these historic logs (e.g., performing historic queries).

[image: _images/Netflow-Architecture.png]
Netflow Architecture

Figure Botnets System High-Level Architecture shows the high-level architecture
of the Botnets network flow-based behavioral detector system. One or
more NetFlow V5 feeds are combined into a single feed, which
duplicates each NetFlow record and fans them out in to N different
detectors. Each detector maintains its own state and sends out alerts
when appropriate via SNMP, standard output to users in realtime, or to
the Unix syslog service. (In Figure 5, syslog events are sent to a
remote syslog server and processed by ZenOSS, an open source IT
monitoring system. In the PRISEM system, all detectors alert via
syslog, which are processed by the Log Matrix Threat Center
application.)

[image: _images/Botnets-Architecture.png]
Botnets System High-Level Architecture

Figure PRISEM Architecture shows the central system
architecture of the PRISEM system. Shown in green are the Security
Information Event Management (SIEM) system and event log archive in
the bottom right. The box in the upper right depicts an instance of
the network flow monitoring (“Botnets” detector system) and SiLK data
archiving, which is typically housed on-site at participant networks
due to sensitivity of network flow data. A central instance of the
Collective Intelligence Framework (CIF) v0.1 database provides
historic information about known malicious activity, which is used to
pull watchlists that the Botnets detectors use for behavioral
detection. A virtual machine server provides processing and AMQP
broker functions to integrate data from multiple sources and correlate
it across participating organizations, and optionally anonymize or
filter any data prior to sharing. At present, a vendor-proprietary
portal provides the graphical user interface front-end for
participants, with the primary PRISEM systems residing behind a
vendor-supported firewall, with command line utilities and AMQP access
provided via an OpenVPN server for secure access. The DIMS dashboard
will front-end this portal and support additional capabilities that
are available on the PRISEM back-end via the AMQP broker.

[image: _images/prisem-system-architecture-v1.png]
PRISEM Architecture

Figure Ops-Trust Architecture Diagram shows the basic architecture
of the Ops-Trust portal system. This system is a combination of a
web-based portal, a wiki for information archiving, an email server,
and DNS and LDAP services tied to OpenID authentication services to
provide single-signon capability. All of these services are provided
via four separate virtual machines, co-resident in a single 1U server
that is backed up off-site. The instance depicted in
Ops-Trust Architecture Diagram is hosted on Ops-Trust hardware. A
development instance was set up at the UW for DIMS development.

[image: _images/ops-trust-system-architecture.png]
Ops-Trust Architecture Diagram

The Ops-Trust portal stores attributes about each member. Figure Ops-Trust Member Information Page shows the
account for the PI, which includes: user UUID; home time zone; nearest
airport (to facilitate contact and meet-ups when one is on travel);
how to contact via email, postal mail, SMS, IM, and phone; and current
PGP encryption key. The portal lets you sign up for email lists, and
switch between “trust groups”. After signing up for (and
optionally being approved for membership) email lists, the user is
included on list email routed through the mail server, and granted
access to the appropriate section of the wiki.

[image: _images/ops-trust-memberpage.png]
Ops-Trust Member Information Page

The DIMS system will take advantage of the foundation of services
provide by this portal in several ways. It will use it as a means of
storing more information about users, the network assets they protect,
the policies and mechanisms for anonymizing and filtering data based
on TLP tagging, etc. It will also use it as a mechanism to distribute
data to users as needed (e.g., alerts about email threads that pertain
to the network assets they protect, providing a means to download
OpenVPN certificates and SSH keys, as a mechanism for storing and
organizing data associated with incidents and campaigns they are
dealing with, etc.) The ability to manage encrypted communications and
multiple email lists facilitates trusted communication and offers a
basis for sending structured threat information in encrypted form,
directly from one user to another, or from a user to all members of a
list.

3.2. Software Development Methodology

As the DIMS system relies upon and integrates multiple existing open source
software components, and code developed by the DIMS developers, the system is
being developed using an Agile programming development methodology (as opposed
to the classic waterfall development methodology with its sequential
processes.) This document, therefore, is a living document that will be
updated as the project proceeds and as cyclic input/feedback from users and
testers is received. Sections to be addressed in future releases of this
document are listed as TBA.

The DIMS project involves coordination of team members in multiple
locations, multiple time zones, and multiple overlapping areas of
responsibility. In order to communicate, coordinate, maintain momentum of
project development, and meet deliverable requirements of the contract
with the sponsor, all DIMS team members must be able to work asynchronously,
independently, and be responsible for following task prioritization or
asking for direction as necessary.

3.2.1. Use of Agile Development Methodology

Integration of existing open source tools requires research into
how the existing tool is designed and how it functions, understanding
how it processes inputs and outputs, and how it is configured.

The Agile methodology [http://agilemethodology.org] and Scrum methodology [http://scrummethodology.com] involve making small
incremental changes based on simple user stories (short descriptions
of what a user wants or needs), and making these changes on a short
time frame (within a sprint, which is usually on the order of one
or two weeks. (See [[agileDevelopment]] Agile development [https://dims-sr.readthedocs.io/en/latest/requirements.html#agiledevelopment].)

Tasks are prioritized using the Jira Agile [https://www.atlassian.com/software/jira/agile] ticketing system, with the
objective of completion of tasking within a 2-week sprint cycle.
Weekly meetings are used to manage sprints.

Both source code, and system configuration files and installation instructions,
are maintained using the Git [http://git-scm.com] source code control system using git-flow [http://danielkummer.github.io/git-flow-cheatsheet/]
and hub [https://hub.github.com/], for eventual open source release on GitHub [https://github.com]. This supports use of
the Vincent Dreisen branching workflow [http://nvie.com/posts/a-successful-git-branching-model/] to allow independent and isolated
changes to be made, which are then to be tested prior to integration into more
mainstream develop or master branches for release.

3.2.2. Use of Continuous Integration

The concepts of Continuous Integration [http://www.thoughtworks.com/continuous-integration] and DevOps [http://theagileadmin.com/what-is-devops/] (also known as
agile system administration or agile operations) for rapid development,
testing, and release of a functional system are employed in order to
build the overall system one component at a time, in a manner that
can support the requirements specified in Adaptation requirements [https://dims-sr.readthedocs.io/en/latest/requirements.html#adaptationreqs]
and [[continuousIntegration]] Continuous Integration & Delivery [https://dims-sr.readthedocs.io/en/latest/requirements.html#continuousintegration]. By automating the way
systems are configured, and how DIMS developed software is installed
on them, not only are incremental changes possible with little effort,
but multiple instances can be supported. Code that reaches the
master branch is considered stable and release ready, at which
point it can be pushed to test/evaluation and/or production systems.
Development test systems would be fed by less stable branches
(e.g., the develop branch.)

Documentation follows the same continuous integration and agile
methodologies, using the Sphinx [http://sphinx-doc.org] program, which processes
ReStructured Text (reST) [http://thomas-cokelaer.info/tutorials/sphinx/rest_syntax.html] files (and is supported by the online
documentation repository, ReadTheDocs [https://readthedocs.org/].)

3.2.3. Use of Distributed Configuration Management

At the initiation of the DIMS project, the program Ansible was
chosen for distributed system configuration and DIMS service
deployment. Use of Ansible in DIMS is described in Section
ansibleplaybooks:ansibleintro of
ansibleplaybooks:ansibleplaybooks.

[image: Configuration Description Taxonomy]
Configuration Description Taxonomy

Figure Configuration Description Taxonomy illustrates the taxonomy of inheritence
levels, following a left-to-right order of application of variables using
global, group_vars and host_vars files (potentially augmented by
playbook-level vars files for specific services.)

Attention

Setting variables in Ansible is quite complicated and should be studied and
understood well by anyone attempting to construct playbooks or configure
hosts and services. The ability to gain insight into how variables are set
at runtime is crucial. The ansibleplaybooks:ansibleplaybooks
documentation covers this topic.

3.2.4. Use of Containerization

During the Base year of the DIMS project, the focus was on taking
as many open source tools as possible, and code developed by
the DIMS team, and installing it on virtual machines using:

	Ubuntu (versions 10.04, 12.04, and 14.04), CentOS 5 and 6,
and Mac OS X as host operating systems;

	Virtualbox and KVM as hypervisors;

	Packer for turning operating system installation ISOs
into Box files for Virtualbox;

	Vagrant for provisioning virtual machines on developers’
host operating systems of choice;

	Ansible for compiling code, configuring operating systems
and services, installing pre-requisites libraries and
tool dependencies, and other required DIMS tasks.

The team ran into a series of endlessly repeating problems
that made progress painstakingly slow. These included:

	One person could get something running, only to hand it
over to someone else to test (who could not run it).

	One team member could compile and install a program
(because they had set up their system before hand with
the requisite sofware), but another ran into missing
dependencies and was blocked, not knowing what to do
to get past the block.

	One team member could check in source code, only to
find that another team member could not check it out
because they had an out-of-date Git client.

	One team member could build a virtual machine with
an open source package on it, but another did not know
how to replicate the steps in the right order and could
not get it to run.

	One team member would research a task, complete coding
of Ansible playbooks to install the given software,
but nobody else on the team could test it because they
did not know the code existed or how to invoke it.

	One team member would code solutions to a problem that
prevented widespread deployment of a given capability
(such as component tests, status information collection,
or event logging), but others on the team were not
aware of the need to update their own development
environments and things that formerly worked for them
would “break”.

	Frequently, only one team member was expert in a particular
software package or operating system, but nobody else was.
This made the person who knew how to do something a blocker
in the critical path. If they were not available when someone
else was trying to meet a deadline, the block would halt
progress.

	Even when things worked right, and complete Vagrant virtual machines
could be built and run with specific services running within them,
IP addresses had to be configured by hand, and no DNS service
existed that knew how to serve those IP addresses from domain names.
This made it difficult for the team to know how to link services
together, so things only worked when all software was installed
in a single virtual machine (assuming that conflicting dependencies
for libraries and operating system did not prevent all the software
components from running on the same virtual machine.)

The result was what seemed like an endless chain of blockers that
introduced friction throughout the entire process.

Concept for a new or modified system [https://dims-ocd.readthedocs.io/en/latest/newsystem.html#newsystem] describes the operational concept for a
new system, the DIMS framework model, which requires a mechanism
that avoids the problems described above. The best available
solution to these problems appears to be the use of
containers (also known as Operating-system-level virtualization [http://en.wikipedia.org/wiki/Operating-system-level_virtualization],
or Microservices [https://en.wikipedia.org/wiki/Microservices] architecture).

Docker [https://www.docker.com/] is seen as the leading technology in this area, garning a tremendous amount of
support and energy. Docker is, “an open source project designed to easily
create lightweight, portable, self-sufficient containers from any application.”
Their motto is “Build, ship, and run any application, anywhere.”
One of the main benefits of the use of containers is getting
away from “dependency hell” of trying to fit a least-common-denominator
of:

	operating system +

	OS version +

	specific libraries +

	specific programming languages +

	specific dependant programs +

	specific service configuration settings

Docker containers are not the perfect solution, by any means. There are
certain security concerns, issues with linking containers together,
keeping them up and running in the face of uncaught exceptions,
etc. (Many of these same problems exist with use of bare-metal or
virtual machines, so certain challenges remain regardless.)
Figure Run Services with Docker (from https://coreos.com/using-coreos/)
illustrates a 3-tiered web application in a clustered containter
deployment.

[image: Run Services with Docker]
Run Services with Docker

The suite of tools for orchestration, shared container components
used to build higher-level images, distributed configuration and
service discovery, persistent storage across clustered systems,
domain name services, logging, and monitoring across a vast number
of systems, all put Docker in a strong position in terms of open
source software as opposed to virtual machines and the
equivalent tools to manage large numbers of virtual machines.
(The commercial tools supporting these tasks on virtual machines
are out of the price range of SLTT government entities, let
alone small- and medium-sized businesses and volunteer
incident response groups.)

Note

For more information on all of these topics, see the
Containerization, Virtualization, “Microservice Architectures” [https://staff.washington.edu/dittrich/home/unix.html#containerization-virtualization-microservice-architectures] section
of the PI’s home page and the document
dimsdockerfiles:usingdockerindims.

3.3. Use of Open Source components

3.4. Summary of High-Level System Architecture Delineation

At the beginning of this section in Background on Existing Core Components we saw DIMS
from the perspective of data flows and core software components. A more
detailed exposition of these components is found in
DIMS Operational Concept Description v 2.9.0 [https://dims-ocd.readthedocs.io/en/latest/index.html#dimsoperationalconceptdescription],
Section Description of current system or situation [https://dims-ocd.readthedocs.io/en/latest/currentsystem.html#descriptioncurrentsystem].

In this section the focus is on delineating the components that are used to
build the DIMS system from those that are functional in an operations context.
Further, it will clarify the difference between the boxes on the left of Figure
Overview of DIMS System (which have a subset of features that would be used
by a non-operations investigative entity (e.g., US-CERT, the United States
Secret Service, the Federal Trade Commission, or a Fusion Center) vs. the gray
box in the bottom right of Figure Overview of DIMS System that includes the
full set of realtime event data collection and network flow monitoring features
that are more operational in nature.

A deployment of the core components of DIMS for a user such as the a
law enforcement agency, a Fusion Center, etc, is depicted as DIMS-OPS
in Figure DIMS Operations.

[image: DIMS Operations]
DIMS Operations

DIMS-OPS Components

	Component
	CSCI/Requirement

	Trident portal and wiki
	Backend Data Stores (BDS) CSCI [https://dims-sr.readthedocs.io/en/latest/requirements.html#bdscsci], Design and implementation constraints [https://dims-sr.readthedocs.io/en/latest/requirements.html#designconstraints]

	DIMS Web App
	Dashboard Web Application (DWA) CSCI [https://dims-sr.readthedocs.io/en/latest/requirements.html#dwacsci]

	LDAP Single-Signon
	Data Integration and User Tools (DIUT) CSCI [https://dims-sr.readthedocs.io/en/latest/requirements.html#diutcsci], [[networkAccessControls]] Network Access Controls [https://dims-sr.readthedocs.io/en/latest/requirements.html#networkaccesscontrols]

	Redis, Hadoop (HDFS), Elasticsearch, etc.
	Backend Data Stores (BDS) CSCI [https://dims-sr.readthedocs.io/en/latest/requirements.html#bdscsci]

	OpenVPN
	Data Integration and User Tools (DIUT) CSCI [https://dims-sr.readthedocs.io/en/latest/requirements.html#diutcsci], [[networkAccessControls]] Network Access Controls [https://dims-sr.readthedocs.io/en/latest/requirements.html#networkaccesscontrols]

	Tupelo
	Data Integration and User Tools (DIUT) CSCI [https://dims-sr.readthedocs.io/en/latest/requirements.html#diutcsci]

	Anonymization
	Data Integration and User Tools (DIUT) CSCI [https://dims-sr.readthedocs.io/en/latest/requirements.html#diutcsci]

	STIX input/output
	Vertical/Lateral Information Sharing (VLIS) CSCI [https://dims-sr.readthedocs.io/en/latest/requirements.html#vliscsci]

Adding in the realtime event data collection elements, known
as DIMS-PISCES is illustrated in Figure DIMS Operations + PISCES. [1]

[image: DIMS Operations + PISCES]
DIMS Operations + PISCES

DIMS-PISCES Components

	Component
	CSCI/Requirement

	Distributed Security Event Data Collection
	Backend Data Stores (BDS) CSCI [https://dims-sr.readthedocs.io/en/latest/requirements.html#bdscsci]

	Alerting
	Data Integration and User Tools (DIUT) CSCI [https://dims-sr.readthedocs.io/en/latest/requirements.html#diutcsci],
Dashboard Web Application (DWA) CSCI [https://dims-sr.readthedocs.io/en/latest/requirements.html#dwacsci]

	Cross-organizational Correlation
	Data Integration and User Tools (DIUT) CSCI [https://dims-sr.readthedocs.io/en/latest/requirements.html#diutcsci],
Dashboard Web Application (DWA) CSCI [https://dims-sr.readthedocs.io/en/latest/requirements.html#dwacsci]

	Customized User Documentation
	Adaptation requirements [https://dims-sr.readthedocs.io/en/latest/requirements.html#adaptationreqs]

	Custom Configuration and Automated Deployment
	Adaptation requirements [https://dims-sr.readthedocs.io/en/latest/requirements.html#adaptationreqs],
[[automatedProvisioning]] Automated Provisioning [https://dims-sr.readthedocs.io/en/latest/requirements.html#automatedprovisioning],
[[continuousIntegration]] Continuous Integration & Delivery [https://dims-sr.readthedocs.io/en/latest/requirements.html#continuousintegration]

Finally, the DIMS team (or anyone wishing to develop DIMS from the open
source code base) requires all of the code development, configuration
management, and continuous integration (or DevOps) features necessary
for development. This is illustrated in Figure DIMS Operations + PISCES + DevOps.

[image: _images/DIMS-OPS-PISCES-DevOps.png]
DIMS Operations + PISCES + DevOps

DIMS-DEVOPS Components

	Component
	CSCI/Requirement

	Trident portal and wiki
	Backend Data Stores (BDS) CSCI [https://dims-sr.readthedocs.io/en/latest/requirements.html#bdscsci],
Design and implementation constraints [https://dims-sr.readthedocs.io/en/latest/requirements.html#designconstraints]

	Git source repository management
	Design and implementation constraints [https://dims-sr.readthedocs.io/en/latest/requirements.html#designconstraints]

	Jenkins Continuous Integration
	Design and implementation constraints [https://dims-sr.readthedocs.io/en/latest/requirements.html#designconstraints]

	Ansible configuration
	Design and implementation constraints [https://dims-sr.readthedocs.io/en/latest/requirements.html#designconstraints]

	Distributed configuration database
	Backend Data Stores (BDS) CSCI [https://dims-sr.readthedocs.io/en/latest/requirements.html#bdscsci],
Design and implementation constraints [https://dims-sr.readthedocs.io/en/latest/requirements.html#designconstraints]

	Docker repository
	Backend Data Stores (BDS) CSCI [https://dims-sr.readthedocs.io/en/latest/requirements.html#bdscsci],
Design and implementation constraints [https://dims-sr.readthedocs.io/en/latest/requirements.html#designconstraints]

	Jira ticketing
	Design and implementation constraints [https://dims-sr.readthedocs.io/en/latest/requirements.html#designconstraints]

For a pilot deployment of DIMS for the U.S. Secret Service, a full DIMS-OPS +
DIMS-PISCES deployment will be instantiated for a select subset of the PRISEM
participants in the Puget Sound to replicate a group of “victim” sites. Using
live data, an incident will be investigated and “reported” to a test “U.S.
Secret Service” DIMS-OPS system. This will validate the concept of reporting
machine-parsable data to a central site using the Vertical and Lateral
Information Sharing CSCI components (see Vertical/Lateral Information Sharing (VLIS) CSCI [https://dims-sr.readthedocs.io/en/latest/requirements.html#vliscsci] and
DIMS Test Plan v 2.9.1 [https://dims-tp.readthedocs.io/en/latest/index.html#dimstestplan]).

[image: U.S. Secret Service Pilot]
U.S. Secret Service Pilot

Footnotes

	[1]	The term PISCES is the proposed replacement for PRISEM moving forward.

4. DIMS architectural design

Figure DIMS Integrated System Architecture illustrates the combined systems
of the PRISEM project, the Trident portal (formerly the Ops-Trust portal),
and the DIMS back end. As
much as possible, the DIMS architecture was built to be overlaid on top of, or
merged into, similar components from these existing systems. For
example, it is not necessary to run three DNS servers for each
project, when one can handle multiple systems and possibly even
multiple domains. These can thus be collapsed into one server for
DNS. The same is true for LDAP and OpenID authentication (the
Trident portal and DIMS are both designed to use these services) and there is only
need for one AMQP message bus server, one mail server, and one
database for security data. All access will be centralized through the
OpenVPN server, with certificates and encryption keys provided to the
user via the Trident portal.

Note

This document was originally written prior to the Ops-Trust portal being
renamed Trident. The name Ops-Trust portal may still exist throughout
this, and related DIMS documents. An effort has been made to cross-reference
the new portal name where possible.

[image: _images/dims-system-architecture-v2.png]
DIMS Integrated System Architecture

4.1. System Software Architecture

The DIMS system conforms with the hardware/software separation
used by the Trident and PRISEM systems, which pre-date the DIMS
project. In both of these projects, some separation of services across
physical and/or virtual machines was done for various reasons of
security, performance, scalability, ease of administration, conformance
with operating system version dependencies, etc.

4.1.1. SIEM event correlation server

The PRISEM system uses a Log Matrix “Threat Center” system, hosted on
a high-end Dell server with multiple cores, large RAM capacity, an SSD
drive to accelerate database activities, and 2TB RAID 1 array for disk
fault tolerance. This system runs CentOS 6.4.

4.1.2. SIEM log archive server

The PRISEM system uses a Log Matrix “Log Center” system, hosted on a
high-end Dell server with multiple cores, and 9TB RAID 5 array disk
fault tolerance. This system runs CentOS 5.10 (due to compatibility
issues with the Vertica database).

4.1.3. Virtual machine management server

The PRISEM system uses a Dell PowerEdge R715 for virtual machine hosting.

4.1.4. AMQP broker

The PRISEM system uses a virtual machine running RabbitMQ for AMQP
broker services.

4.1.5. Collective Intelligence Framework (CIF) server

The PRISEM system is using a CIF v0.1 database on physical hardware
(Dell PowerEdge 1950). This system will be replaced with a virtual
machine running CIF v1.0 (or newer).

4.1.6. ID management and authentication server

The Ops-Trust and DIMS projects are using OpenID and LemonLDAP (though
in slightly different ways). The intention is to combine these into a
single pair of OpenID/LDAP servers.

4.1.7. Domain name server

The Ops-Trust system runs its own DNS server for all system components
in a single-purpose VM. The PRISEM project is currently using static
host tables and DNSMasq in slightly different ways (depending on
whether access is from the open internet, or through the OpenVPN
tunnel). It is anticipated that a split-DNS configuration, using the
same server as the Ops-Trust infrastructure, will be used in the long
run to get consistent DNS response regardless of access method used.

4.1.8. Virtual private network tunnel server(s)

The PRISEM project has an OpenVPN server for remote access to the
backdoor VLAN. This allows access to the AMQP broker, and direct
access to the MySQL databases used by Log Matrix. (The vendor
maintains their own Cisco managed VPN/firewall for access from their
internal network).

DIMS components are separated (as appropriate) for similar reasons, and
integrated as much as possible by combining similar services in order to
minimize the total number of physical and/or virtual machines in use. For
example, if there are three domain name servers, they can be combined into one
server that handles multiple domains.

The following Figures help illustrate the concepts of system implementation of
the service components in relationship to physical (“bare-metal”) hardware.

Of course the simplest design is to take a hardware system, install a single
operating system on it, and install every piece of software into that single
server. For the reasons listed above, this is not a viable or practical
solution, since the component pieces were never designed to work this way. The
level of effort required to debug, patch, document, and attempt to get the
original authors to accept the code changes into their code base (to avoid
adding a maintence cost for maintaining your locally patched fork as new
versions of the original software are released) is not sustainable.

Figure Pure Virtual Machine Architecture shows the next simplest design, which is to
host multiple virtual machines on a single server. The Host is shown at the
bottom, comprised of a highly-provisioned server, a base operating system and a
virtual machine hypervisor. Each virtual machine Guest is then created and
installed with its own combination of base operating system, libraries and
binaries, and application software. The result is a single physical
computer with a total of six servers (4 Ubuntu Linux, 1 Red Hat Enterprise
Linux, and 1 Debian Linux) that must be configured, patched, and maintained
separately. There is also a higher overhead for processing and memory,
due to the hypervisor hardware virtualization layer.

[image: _images/VM-Architecture.png]
Pure Virtual Machine Architecture

Figure Pure Container Architecture shows an alternative to virtual
machines, which is the use of pure containerization of all services. In this
architectural model, the Docker Engine replaces the hypervisor as part of the
Host layer. On top of this are Containers formed from images that combine the
foundational operating system bits, libraries, binaries, and application
software as in Figure Pure Virtual Machine Architecture, except there is no
virtualization of hardware taking place. Instead, container images hold the
file system contents that are then executed in isolated process spaces that
function similarly to virtual machines (though simpler, as they only provide a
service oriented function, rather than a fully-functional operating system into
which you log in to like a “normal” virtual machine or bare-metal operating
system.) One of the principle advantages to this architectural model is the
separation of content in each container, allowing just the specific base
operating system, binaries and libraries, and application code for each open
source security tool to be set up exactly as the producer supports
with no risk of that breaking other tools that are part of the larger
system.

[image: _images/Container-Architecture.png]
Pure Container Architecture

Of course is it much more complicated than this in real life. Requirements
for scalability and redundancy drive towards use of multiple bare-metal
servers. This leads to two more architectural models to add to the mix.

The first is to clusterize the containerized model we just saw.
Figure Clusterized Container Architecture depicts a two-node
CoreOS cluster. A program etcd is used as a distributed key/value
store that facilitates managing the distribution and management of
containers across the two server nodes. App2 and App3, in this
case, have multiple instances running (2x App2 and 3x App3, in
this case), both split across the two cluster members. This allows
one of the two cluster servers to be taken off-line without
disrupting the services provided by App2 and App3.

[image: _images/Clusterized-Containers-Architecture.png]
Clusterized Container Architecture

The final architectual model is combination of the earlier models. Figure
Hybrid VM+Container Architecture depicts a Hybrid combination of bare metal,
virtual machines, and containers within virtual machines. (Because containers
are so light-weight, you can run containers in both the Host and Guests,
containers within containers, or combinations nested within each other!)

The hybrid model can be accomplished by adding virtualized CoreOS nodes
in the form of VM Guests along side other VM Guests in one server (as
shown in Figure Hybrid VM+Container Architecture), or splitting pure virtual
machines and pure-containerization across multiple servers (as shown
in Figure Multi-server Hybrid Architecture).

[image: _images/Hybrid-Architecture.png]
Hybrid VM+Container Architecture

[image: _images/VMs-Containers-Architecture.png]
Multi-server Hybrid Architecture

A primary advantage of this architectual model is the ability to use the
separation of virtual machine Guests to leverage operating systems like CoreOS
(that are designed for clusterized containerization support) along side
multiple different base operating systems in other virtual machine Guests,
within a single hardware server. This allows movement of services as
necessary to address performance issues that may be discovered over
time as the system scales up.

Note

The architecture currently being used for DIMS development uses the
Hybrid model, with a three-node CoreOS cluster on bare-metal servers,
with a fourth server supporting virtual machine Guests.

Work is underway to replicate the entire system using a single-server Hybrid
deployment as shown in Figure Hybrid VM+Container Architecture as the prototype
for the U.S. Secret Service ECTF deployment.

The ECTF deployment is being planned to be done with two servers with
a subset of DIMS components (primarily focusing on the Trident portal.)
One server will be used to provide a stable “production” service platform,
while the second server can be used for staging new releases, testing,
supporting migration to other data center facilities, or as a fallback in
case the first system is damaged.

4.2. Internal Communications Architecture

The DIMS system was designed to overlay on top of the legacy PRISEM
system and other open source security tools. PRISEM had interfaces
to some of its services that integrated
an instance of the Collective Intelligence Framework (CIF) database
for IP-based reputation watchlists and historic attacker context, an
archive of historic event logs, and remotely stored network flow data
in SiLK format. The logical architecture that integrated these systems
is a combination of message bus (using AMQP), SSH tunneled file and/or
command line access, or HTTPS web interfaces and RESTful API.

Figure AMQP Messaging Bus Architecture shows the general flow of commands and logged
events from clients and services used in the PRISEM system for
inter-process communication between system components. In this
example, there are three general RPC services named A, B, and C.
Calls from remote clients A (color blue) and B (color black) are
processed by one of n instances of multiprocessing service daemons on
the same hardware as the AMQP broker (by multiple processes or virtual
machines). Client C in this diagram (color green) is also a remote
client, as is the RPC service C. (The AMQP broker and RPC mechanism
allows these programs to run anywhere we want.) Also depicted in this
diagram is an event feedback loop (color red). All clients and
services log significant events such as process startup, process end,
time taken to process RPC calls, or even more fine-grained debugging
output to assist developers. These events logs are published to a
fanout exchange, which distributes the events to any subscribers who
wish to consume them.

[image: _images/rabbitmq-bus-architecture.png]
AMQP Messaging Bus Architecture

Figure Remote access via OpenVPN to VLAN1 depicts a high-level view of remote access
from developer laptops (on the right) or servers at a remote site (on
the left) using an OpenVPN tunnel that is routed via Network Address Translation
to a non-public VLAN. This simplistic diagram does not show specific
routable IP addresses of the remote systems, though it does show the
tunnel IP address assigned by OpenVPN in relation to the OpenVPN
server, and the difference between the network address ranges used by
hosts on VLAN1 vs. the OpenVPN tunnel.

Note

In reality, there are multiple non-private network address ranges and VLANs
in use by Virtual Machine hypervisors, Docker containers, and physical
switch VLANs. This is described in the “DIMS As-Built” document and we
are in the process of simplifying the highly-complicated networking
implementation that resulted from building on top of the legacy PRISEM
platform that goes back to the project’s initiation in 2008.

[image: _images/dims-vpn-vlan1.png]
Remote access via OpenVPN to VLAN1

4.3. Concept of execution

The problem of event collection, correlation, and alerting, is quite common.
Nearly every anti-virus vendor, managed security service provider, major internet
platform provider, or multi-national enterprise, shares similar problems with
processing event data. They are nearly all looking at the same type of
architecture to handle the high data volumes and flow rates associated with
large, high-bandwidth networks.

A common combination of open source tools used to process and index large volumes of event
logs is Elasticsearch, Logstash, and Kibana, known as the
“ELK stack” for short. The developers of the ELK stack refer to it [2] as
“an end-to-end stack that delivers actionable insights in real-time from almost
any type of structured and unstructured data source.” Elasticsearch provides
flexible storage of data and flexible search of data. Logstash is used to parse
the data, and then it sends it to Elasticsearch. Kibana then takes the parsed
data from Elasticsearch and presents it through a browser in an easy-to-view
way. Kibana’s dashboards are customizable in a variety of ways to we can
better dissect and view the data.

	Elasticsearch

	Architecture behind our new Search and Explore experience [https://developers.soundcloud.com/blog/architecture-behind-our-new-search-and-explore-experience] (where “our” is Soundcloud... see “final box-diagram”)

	How HipChat Stores And Indexes Billions Of Messages Using ElasticSearch And Redis [http://highscalability.com/blog/2014/1/6/how-hipchat-stores-and-indexes-billions-of-messages-using-el.html]

	Using elasticsearch and logstash to serve billions of searchable events for customers [http://www.elasticsearch.org/blog/using-elasticsearch-and-logstash-to-serve-billions-of-searchable-events-for-customers/]

	Example configuration of Elasticsearch [https://github.com/aol/moloch#example-configuration] for AOL’s Moloch network flow monitoring tool [https://github.com/aol/moloch]

	How to use Elasticsearch with Python [http://snippets.aktagon.com/snippets/611-how-to-use-elasticsearch-with-python]

	Security Analysts Discuss SIEM’S – Elasticsearch/Logstash/Kibana vs ARCSight, Splunk, and more [http://skizzlesec.com/2014/06/08/security-analysts-discuss-siems-elasticsearchlogstashkibana-vs-arcsight-splunk-and-more/]

	Scaling an ELK stack at bol.com [http://www.slideshare.net/renzotoma39/scaling-an-elk-stack-at-bolcom-39412550]

	Logstash

	What is Logstash? [http://logstash.net/docs/1.4.2/learn]

	Github logstash/cookbook [https://github.com/logstash/cookbook]

	Kibana

	Creating an Advanced Kibana Dashboard Using a Script [http://blog.trifork.com/2014/05/20/advanced-kibana-dashboard/]

	Templates and Scripts [http://www.elasticsearch.org/guide/en/kibana/current/templated-and-scripted-dashboards.html]

	Command Line Load Dashboard [https://github.com/elasticsearch/kibana/issues/333]

The ELK stack has been used to process hundreds of millions to billions of
events per day. Mozilla uses it as part of the Mozilla Defense Platform [https://media.readthedocs.org/pdf/mozdef/latest/mozdef.pdf], or
MozDef [https://github.com/jeffbryner/MozDef]. (See Figure MozDef data flows for the data flow diagram for the
Mozilla Defense Platform [https://media.readthedocs.org/pdf/mozdef/latest/mozdef.pdf], or MozDef [https://github.com/jeffbryner/MozDef].
See also Jeff Bryner’s Bsides PDX 2014 presenation on MozDef [http://jeffbryner.com/bsidespdx2014/]
and Anthony Verez’ presenation MozDef: You’ve collected your security logs,
now what? [https://air.mozilla.org/intern-presentations-11/] and accompanying slides [http://anthony-verez.fr/mozdef/].) The company Mailgun has described how
they are Using elasticsearch and logstash to serve billions of searchable
events for customers [http://www.elasticsearch.org/blog/using-elasticsearch-and-logstash-to-serve-billions-of-searchable-events-for-customers/]. (For an order of magnitude comparison, the PRISEM
system currently collects between 30-60 million events per day, not the
billions described in this reference.)

[image: _images/MozDef-flows.png]
MozDef data flows

Figure Logstash and Metrics (source [1]) shows how the event log
collection process works in terms of data flows between sources and ELK stack
components. The DIMS system is designed to sit on top of such an event
collection infrastructure.

[image: _images/logstash-and-metrics.png]
Logstash and Metrics

Section Use of Containerization discusses Docker [https://www.docker.com/] and its role in
implementing a micro-service architecture. ELK stack components have been
demonstrated being implemented in containers. (E.g., see Automating Docker
Logging: ElasticSearch, Logstash, Kibana, and Logspout [http://nathanleclaire.com/blog/2015/04/27/automating-docker-logging-elasticsearch-logstash-kibana-and-logspout/], by Nathan LeClaire
and Scalable Docker Monitoring with Fluentd, Elasticsearch and Kibana 4 [http://blog.snapdragon.cc/2014/11/21/scalable-docker-monitoring-fluentd-elasticsearch-kibana-4/], by
manu, Elasticsearch, Weave and Docker [http://weaveblog.com/2015/01/20/elasticsearch-and-weave/], by errordeveloper, and the GitHub
repository of iantruslove/docker-elasticsearch [https://github.com/iantruslove/docker-elasticsearch] with a Docker image for
ElasticSearch using Maestro orchestration.)

Real-time monitoring of Hadoop clusters [http://blog.sequenceiq.com/blog/2014/10/07/hadoop-monitoring/] describes deploying the ELK stack
alongside Hadoop cluster nodes to provide a realtime monitoring capability.
(See also Apache Hadoop 2.6.0 on Docker [http://blog.sequenceiq.com/blog/2014/12/02/hadoop-2-6-0-docker/], by Janos Matyas, for containerizing
the Hadoop cluster nodes.)

[image: High-level architecture for monitoring Hadoop with the ELK stack]
High-level architecture for monitoring Hadoop with the ELK stack

4.4. Interface design

4.5. File and Database Design

[image: _images/PRISEM-data-volumes.png]
PRISEM Data Volumes

Figure PRISEM Data Volumes lists the database and non-database
data sources used by the PRISEM system, along with the approximate
timespan over which those records are kept.

4.6. Database Management System Files

There is an approximate average of 20M events per day collected by the
ThreatCenter database server (zion.prisem.washington.edu), which is
configured with a 48-hour data retention window. These records are
kept in a database optimized for continuous correlation. The
normalized records (which include the original raw event log) are
stored in over 167,000 discrete read-optimized Vertica database files
on the LogCenter server (money.prisem.washington.edu). The Collective
Intelligence Framework database (v0.1) keeps its data in a Postgress
database. This database is used to pull feeds from remote sites, and
to generate feeds for use by the Botnets system’s watchlist
detectors. At regular periods during the day, the CIF database has
some tables copied into a read-optimized MySQL database known as
Sphinx for accelerated discrete queries. (It is the Sphinx database
that is used by the cifbulk RPC service).

4.7. Non-Database Management System Files

Network flow records are stored locally at the City of Seattle
(pink.seattle.gov) in SiLK format. The disk capacity of 1TB is capable
of holding just over 2 years of flow data in over 258,000 discrete
SiLK data files. (SiLK is a highly-optimized fixed length binary
format that is quite efficient for post-processing without needing a
database management system.)

4.8. Human-Machine Interface

The raw inputs to PRISEM fall into three primary buckets: event logs
from security devices in text form, which are normalized as they are
processed by the SIEM; Network flow records that are received as
NetFlow V5 records processed in real time and discarded, but a copy is
converted to SiLK format and saved for historic query capability;
reputation data pulled from various feeds and stored in a Collective
Intelligence Framework (CIF) database. Various ad-hoc formats of
“indicators of compromise” or “observables” are received from outside
parties, which are primarily processed by hand (this includes
indicators received from federal government sources, for example Joint
Indicator Bulletins (JIBs) from the Federal Bureau of Investigation).

[image: _images/CiscoFWSM.png]
Cisco FWSM Event Log (Redacted)

Examples of standard security device logs can be seen in Figure
Cisco FWSM Event Log (Redacted) (Cisco Firewall Security Manager, or FWSM), Figure
Netscreen Event Log (Redacted) (Netscreen Firewall), Figure Tipping Point Logs (Redacted)
(Tipping Point Intrusion Prevention System, or IPS), and Figure
WebSense Log Sample (Redacted) (Websense web filter). These examples are redacted,
but show representative content that is used for correlation (e.g.,
source and destination IP addresses, ports, protocols, etc.)

[image: _images/Netscreen.png]
Netscreen Event Log (Redacted)

[image: _images/TippingPoint.png]
Tipping Point Logs (Redacted)

[image: _images/WebSense.png]
WebSense Log Sample (Redacted)

Figure Botnets System Event Log (Redacted) illustrates what events logged by the
Botnets system detectors look like. All of these examples are for
“watchlist” detectors that simply trigger when they see a connection
to/from a host on the watchlist. Each detector has its own ID (e.g,
“CIFList” in the first entry), followed by the ranking score for that
detector (“@8” in this case for the CIFList detector). This is used in
the calculation of score for ranking significance of events in the
SIEM. Also shown are the IP addresses of the internal hosts involved
in the alerted activity, as well as the IP addresses of the systems on
the watchlists.

[image: _images/Botnets-syslog.png]
Botnets System Event Log (Redacted)

[image: _images/HistoricEventLog.png]
Example Historic Event Log Data (Redacted)

Figure Example Historic Event Log Data (Redacted) shows three records returned from a
search of historic event logs from the Log Matrix SEIM log
archive. These records have been anonymized to conceal the specific IP
addresses and domain names of the sources (Seattle Children’s Hospital
and the Port of Tacoma, in this case). Notice that the schema used by
this vendor includes both destination IP address and destination port,
but only includes source IP address (not source port) making certain
queries of the database impossible. For example, attempting to find
records related to malware that uses fixed source port for flooding
could not be directly queried, requiring extraction of the
“description” field (i.e., the original raw event) and parsing to
identify related records. A solution to this would be to extract all
of the data from the database and store it in a more flexible
database.

Indirectly related to the previous data sources is meta-data that
allows classification, filtering, and anonymization, based on
organizational units for networks and sites. Table
Participant identification mapping illustrates how top level domains and/or
CIDR blocks for a subset of PRISEM participants are mapped to their
Site ID strings and chosen anonymization strings (i.e., the label that
participant would like to use to mask their internal IP addresses and
host names in reports that are shared outside the trust group.) Their
use in identification of “Friend or Foe” is described in the Concept
of Operations document. (Such a cross-organizational correlation result using
the full map as suggested in Table Participant identification mapping can be seen in
Figure :ref`crosscorriff`.)

Participant identification mapping

	CIDR or Domain
	Site ID
	Participant

	156.74.0.0/16
	CTYSEA
	CTYSEA

	.seattle.gov
	CTYSEA
	CTYSEA

	.seattle.wa.gov
	CTYSEA
	CTYSEA

	.seattle.wa.us
	CTYSEA
	CTYSEA

	192.103.189.0/24
	PORTTAC
	PORTTAC

	66.113.101.0/24
	PORTTAC
	PORTTAC

	.portoftacoma.com
	PORTTAC
	PORTTAC

	174.127.160.0/24
	COB
	BELLWA

	12.17.152.0/23
	COB
	BELLWA

	.bellevue.gov
	COB
	BELLWA

	.ci.bellevue.wa.us
	COB
	BELLWA

[image: Cross-organizational Correlation of Query Results (Redacted)]
Cross-organizational Correlation of Query Results (Redacted)

[image: _images/ExampleNetworkFlowReport.png]
Example Network Flow Report (Anonymized Targets)

Footnotes

	[1]	http://www.semicomplete.com/presentations/logstash-hmmm

	[2]	http://www.elasticsearch.org/overview

5. DIMS detailed design

5.1. Hardware Detailed Design

[image: _images/hardware_layout_diagram.png]
System Hardware Rack Layout

Figure PRISEMHardwareLayoutDiagram shows the physical hardware
configuration for PRISEM system components in the server rack located
in the UW Tower IT data center. Green boxes are those that were used
for the PRISEM Project and for DIMS system development, while white and gray boxes
are either unused or occupied by other resources. Some of the initial
physical hardware that became unstable or obsolete was replaced
was replaced by virtual machines.

The principal PRISEM hardware consisted of Dell PowerEdge servers. One
PowerEdge 1950 server (floyd) was used for a CIF database server, and two
Dell R720 servers (zion and money)
servers were used for the Log Matrix Threat Center and Log Center
servers. Both zion and money are replacements for the original Dell
R710 servers purchased at the start of the project in 2008. Virtual
machines are run on a Dell PowerEdge R715 server, with 128GB RAM,
2x12-Core 1.8GHz AMD Opteron processors, and 12 – 1TB drives in a RAID
5 array.

Physical networking is provided by multple managed switches, some
configured to support virtual LAN (VLAN) isolation. One is a D-Link xStack Managed
24-Port Gigabit L2+ 1/10-GigE switch, another a D-Link DXS-3227 1-GigE
managed switch. One VLAN provides an isolated network for
inter-system communication behind a vendor-supported stateful firewall
and OpenVPN server for remote access. Another VLAN provides
internet-routable connections in front of the firewall. At present,
only IPv4 is supported for network connectivity.

Note

All of this is better detailed in the internal document
dimsasbuilt:dimsasbuilt.

5.2. Software Detailed Design

The DIMS platform is made up of several open source sub-systems.

	A Dashboard web application (written using AngularJS) for workflow
related operations. It provides a graphical user interface for
control, with ReST style HTTP and Unix socket interfaces
to backend services.

	A web application server (written using Node.js) that in Javascript)
with the following interfaces:
	HTTP - communicates with client

	AMQP - communicates with AMQP server

	Socket - communicates with client

	Redis - communicates with redis database

	Postgres - communicates with PostgreSQL

	An OpenID authentication and LDAP directory service that is used by
DIMS components to provide a single-signon login mechanism.

	A RabbitMQ (AMQP) message bus for supporting remote procedure
call services, and message brokering for things like chat and
event logging.

	A Collective Intelligence Framework database server.

All of these open source components are installed and configured
using Ansible from ad-hoc control hosts (e.g., developer laptops),
and via a Jenkins continuous integration server by manual, or
event-triggered, jobs.

5.3. Internal Communications Detailed Design

Figure PRISEM AMQP Data Flows shows a more detailed perspective on the
central AMQP bus than that in Section AMQP Messaging Bus Architecture.
Red boxes depict the command line clients,
client applications, and “service” daemons that front-end
accces to data stores (the gray boxes with solid Blue lines
on top and bottom) and other command line programs (the
Orange boxes). The dashed Green lines are TCP connections
to the AMQP service port on the central RabbitMQ server
on the host in the bottom left of the Figure. Because each
of the Red boxes connects to the AMQP bus, it can publish
or subscribe to data flows on specified named channels
or exchanges. Programs wishing to use services publish
their request in the form of special JSON command object,
and they get back a special JSON response object with the
results. (The details are described in the
prisem:prisemdataquery Section of the
prisem:prisemutilities document.

[image: _images/PRISEM-amqp-flows.png]
PRISEM AMQP Data Flows

There are several services available within the PRISEM architecture as
Remote Procedure Call (RPC) services, with some data distribution and
feedback mechanisms in the form of publish/subscribe fanout
services. These are:

	RPC service rwfind – This service provides search capability to
stored network flow records kept in SiLK tools format. It returns the
results in text report format for human consumption, or in structured
JSON format for simplified processing by programs.

	RPC service anon – This service provides IP address and DNS name
identification/anonymization/extraction, statistics, match/non-match
identification, and other functions, using the ipgrep script. This
service is called as part of the crosscor service in order to
identify friend or foe.

	RPC service cifbulk – This service front-ends the Sphinx database
accelerator, which provides a read-only snapshot of the CIF database
for a 10:1 speed increase for queries. It takes as input a list of
items to search for, and iterates over the list of items it is passed
concatenating the results (which are JSON by design) into a JSON
array.

	RPC service crosscor – This service performs cross-organizational
correlation on search results obtained from the rwfind, lmsearch,
and cifbulk services.

	Watchlist generation – Currently, a scheduled script produces
watchlist files from CIF feeds and distributes them to systems that
use the watchlists via rsync over SSH tunnels. These will be replaced,
eventually, with publish/subscribe services via AMQP.

	Daily reports from the Botnets system – Currently, a scheduled script
generates daily reports that summarize the detected activity by the
Botnets system. This text report will be enriched with context
provided by the cifbulk service, the crosscor service, and the
identify friend or foe mechanism. This will be a model for a suite of
DIMS scheduled reports.

Figure DIMS and Trident Component Interfaces depicts the communication flows between components
within the DIMS code base, and those within the Trident (ops-trust portal
re-write) code base at a logical level. Both DIMS and Trident have architecturally
split their back end data stores from the front end user interfaces (each having
a command line interface and a web application graphical user interface.)

[image: _images/DIMS-Trident-v1.png]
DIMS and Trident Component Interfaces

DIMS components that need to communicate to the Trident backend user database
can either use the Trident RESTful interface in the same way as the Trident
CLI (known as tcli, pronounced “tickly”), or they can use the PRISEM remote
data query mechanism to front-end tcli. (See Figure DIMS and Trident Component Stack.)
The former is likely the simplest and
most robust mechanism for web application GUI-to-backend data flows.

The PRISEM system used an obsolete (past end-of-life) commercial SEIM
product that collected logs from participating sites, and forwarded them
to a central storage and processing system. This is described in
the DIMS Operational Concept Description v 2.9.0 [https://dims-ocd.readthedocs.io/en/latest/index.html#dimsoperationalconceptdescription], Section
PRISEM capabilities [https://dims-ocd.readthedocs.io/en/latest/currentsystem.html#prisemcapabilities], and depicted in this document in
Figure PRISEM Initial Deployment and Flows.

The data flow used in the more modern MozDef system was described in Section
Concept of execution. MozDef uses Python scripts for enrichment of
incoming event logs, optionally received via AMQP (using RabbitMQ) (see
MozDef Concept of Operations [http://mozdef.readthedocs.org/en/latest/introduction.html#concept-of-operations]).

To replace this distributed log collection system with an open source
alternative, the features of RabbitMQ known as Federated Queues [https://www.rabbitmq.com/federated-queues.html] and
Distributed RabbitMQ brokers [https://www.rabbitmq.com/distributed.html] (specifically, the Shovel plugin [https://www.rabbitmq.com/shovel.html]),
implemented in Docker containers like other DIMS components, can be
used. This architecture is depicted in Figure Proposed DIMS-PISCES Collector Architecture.

[image: Proposed DIMS-PISCES Collector Architecture]
Proposed DIMS-PISCES Collector Architecture

The mechanisms for implementing this distributed collection archicture using
RabbitMQ are described in:

	Alvaro Videla - Building a Distributed Data Ingestion System with RabbitMQ [https://youtu.be/EUfSgYU_SFk], YouTube, Jul 16, 2014

	Distributed log aggregation with RabbitMQ Federation [http://jaxenter.com/distributed-log-aggregation-with-rabbitmq-federation-107287.html], by Alvaro Videla, December 17, 2013

	Routing Topologies for Performance and Scalability with RabbitMQ [http://spring.io/blog/2011/04/01/routing-topologies-for-performance-and-scalability-with-rabbitmq/], by Helena Edelson, April 1, 2011

As described in Distributed log aggregation with RabbitMQ Federation [http://jaxenter.com/distributed-log-aggregation-with-rabbitmq-federation-107287.html], the relationship
between participant sites with the DIMS-PISCES collector is one of upstream
exchanges, which will feed the central DIMS-PISCES backend data store
acting as a downstream exchange via the RabbitMQ Shovel plugin [https://www.rabbitmq.com/shovel.html].

[image: Relationship between Upstream and Downstream Exchanges]
Relationship between Upstream and Downstream Exchanges

Certain types of information that are related to the site where
the upstream exchange is located make sense to be included by
the producer scripts when queueing events at the upstream for
later transport to the downstream exchange. These would be
things like geolocation from an off-line database (e.g., Maxmind),
and tagging with the SiteID, etc.

Other types of data do not make sense to add at the upstream, most notably
data that resides at the central backend data store (e.g, data held in the
Collective Intelligence Framework (CIF) database, which was described in
Section Current system or situation [https://dims-ocd.readthedocs.io/en/latest/currentsystem.html#currentsystem] of the
DIMS Operational Concept Description v 2.9.0 [https://dims-ocd.readthedocs.io/en/latest/index.html#dimsoperationalconceptdescription].) In order a producer to tag
data using information stored remotely, the producer would have to make a
remote query for the data, then insert it, then queue the event log data. This
requires that this added data transit the network twice (once in response to
the query for it, and again when the event log is transmitted from upstream
exchange to downstream exchange.)

It makes more sense to insert a consumer on the downstream exchange that does
this enrichment using locally available data, then index it in the backend data
store.

Other web pages that provide alternative methods of collecting log
events in Docker containers include the following:

	Automating Docker Logging: ElasticSearch, Logstash, Kibana, and Logspout [http://nathanleclaire.com/blog/2015/04/27/automating-docker-logging-elasticsearch-logstash-kibana-and-logspout/], by Nathan LeClaire, Apr 27, 2015

	Scalable Docker Monitoring with Fluentd, Elasticsearch and Kibana 4 [http://blog.snapdragon.cc/2014/11/21/scalable-docker-monitoring-fluentd-elasticsearch-kibana-4/], by manu, November 21, 2014

	syslog logging driver for Docker [http://www.wolfe.id.au/2015/05/03/syslog-logging-driver-for-docker/], by Mark Wolfe, May 3, 2015

	Real-time monitoring of Hadoop clusters [http://blog.sequenceiq.com/blog/2014/10/07/hadoop-monitoring/], by Attila Kanto, October 7, 2014

5.4. External Communications Detailed Design

Figure Conceptual Diagram of Remote VPN Access shows a conceptual view of remote access
to an internal Virtual LAN (VLAN) via an OpenVPN tunnel. Each of
the hosts at the top of the diagram (a remote system, such as a
data collector node, in the upper left, and two developer
laptops at the upper right.)

[image: _images/dims-vpn-vlan1.png]
Conceptual Diagram of Remote VPN Access

Remote OpenVPN clients connect to the OpenVPN server and a tunnel
interface (tun0) is created for each host on the subnet
10.86.86.0/24. The OpenVPN server provides Network Address
Translation (NAT) services to these devices to its internal
interface on the internal virtual LAN (VLAN1) using
the 10.142.29.0/24 network block. Bare-metal and virtual
machine servers sharing this VLAN are thus directly accessible
behind the firewall.

Note

Not depicted in Figure Conceptual Diagram of Remote VPN Access are the specific routable
IP addresses that each of the tunnel clients on the top of the
diagram, nor the OpenVPn server itself, are using. The OpenVPN
server is shown as splitting the two boxed virtual networks to indicate its
role in providing remote access that connects the two virtual networks by
way of a tunnel using the network address range 10.86.86.0/24 in this
case. To include the Internet-routable IP addresses, while being more
precise, complicates the diagram. These laptops have two interfaces (one
wired, one wireless) that can be used for Internet access required to
connect to the OpenVPN server via a public IP address.

Note

To facilitate development and testing of components during the development
phase of the DIMS project, multiple OpenVPN tunnels were used to provide
relatively unrestricted remote access to internal DIMS systems until the
platform stabilized and tighter access control rules applied. The team did
not have the staff resources to start out with tight access controls and be
able to diagnose problems that could be caused by either service
misconfiguration, network routing misconfiguration, DNS misconfiguration,
or access control misconfiguration. Thus a more open architecture was used
to lessen friction during development across multiple timezones and
multiple sites, with many team members also using mobile devices.

In practice, this kind of remote VPN access is only required for
development activities that are not easily supported by either SSH tunnels,
or SSL connections to AMQP or other specific services. For example, Ansible
uses SSH, so configuration management and CI/CD functions do not require a
full OpenVPN tunnel. Containerized microservices using Docker networking
can use SSL for tunneling, providing their own equivalent of OpenVPN
tunnels.

6. Requirements traceability

The following table is found in Section CSCI capability requirements [https://dims-sr.readthedocs.io/en/latest/requirements.html#capabilityrequirements] of
DIMS System Requirements v 2.9.0 [https://dims-sr.readthedocs.io/en/latest/index.html#dimssystemrequirements]. Each of the elements below links to the
relevant section.

	CSCI
	Label
	Contract Item

	Backend Data Stores (BDS) CSCI [https://dims-sr.readthedocs.io/en/latest/requirements.html#bdscsci]
	BDS
	C.3.1.1

	Dashboard Web Application (DWA) CSCI [https://dims-sr.readthedocs.io/en/latest/requirements.html#dwacsci]
	DWA
	C.3.1.1

	Data Integration and User Tools (DIUT) CSCI [https://dims-sr.readthedocs.io/en/latest/requirements.html#diutcsci]
	DIUT
	C.3.1.2

	Vertical/Lateral Information Sharing (VLIS) CSCI [https://dims-sr.readthedocs.io/en/latest/requirements.html#vliscsci]
	VLIS
	C.3.1.3

7. Notes

This document is structured on MIL-STD-498 [http://en.wikipedia.org/wiki/MIL-STD-498], described at A forgotten military
standard that saves weeks of work (by providing free project management
templates) [http://kkovacs.eu/free-project-management-template-mil-std-498], by Kristof Kovacs. Specifically, this document is modelled on
SSDD.html [http://kkovacs.eu/stuff/MIL-STD-498-templates-html/SSDD.html].

7.1. Glossary of Terms

	Agile

	A programming methodology based on short cycles of feature-specific changes
and rapid delivery, as opposed to the “Waterfall” model of system
development with long requirements definition, specification, design,
build, test, acceptance, delivery sequences of steps.

	Botnets System

	The name given to the re-implementation of Einstein 1
technology. See
http://web.archive.org/web/20131115180654/http://www.botnets.org/

	cron

	A Unix/Linux service daemon that is responsible for running background
tasks on a scheduled basis.

	Git

	A source code version management system in widespread use.

	CIFglue

	“Simple rails app to quickly add indicators to the Collective Intelligence
Framework”

	Cryptographic Hash	Cryptographic Hashing Algorithm

	A mathematical method of uniquely representing a stream of bits with a
fixed-length numeric value in a numeric space sufficiently large so as to
be infeasible to predictably generate the same hash value for two different
files. (Used as an integrity checking mechanism). Commonly used algorithms
are MD5, SHA1, SHA224, SHA256, RIPEMD-128. (See also
http://en.wikipedia.org/wiki/Cryptographic_hash_function).

I
An aggregation of software that satisfies an end use function and is
designated for separate configuration management by the acquirer. CSCIs
are selected based on tradeoffs among software function, size, host or
target computers, developer, support concept, plans for reuse,
criticality, interface considerations, need to be separately documented
and controlled, and other factors.

	Einstein 1

	A network flow based behavioral and watchlist based detection system
developed by University of Michigan and Merit Networks, Inc. for use by
US-CERT. The re-implementation is known as the Botnets System.

	Fusion Center

	Entities created by DHS to integrate federal law enforcement and
intelligence resources with state and local law enforcement for greater
collaboration and information sharing across levels of SLTT governments.

	GZIP

	Gnu ZIP (file compression program)

	MUTEX

	Mutual Exclusion (object or lock, used to synchronize execution of
independent threads or processes that must share a common resource in an
exclusive manner, or to ensure only one copy of a program is running at a
time)

	NetFlow

	Record format developed by Cisco for logging and storing Network Flow
information (see also SiLKTools).

	NoSQL

	The term for database that does not use the typical table-based relational
schema as Relational Database Management Systems (RDBMS)

	Ops-Trust (ops-t)

	Operational Security Trust organization (see http://ops-trust.net/)

	Redis

	A “NoSQL” database system used to store files in a key/value pair model via
a RESTful HTTP/HTTPS interface.

	SiLKTools

	A network flow logging and archiving format and tool set developed by
Carnegie Mellon’s Software Engineering Institute (in support of CERT/CC).

	Team Cymru

	(Pronounced “COME-ree”) – “Team Cymru Research NFP is a specialized
Internet security research firm and 501(c)3 non-profit dedicated to
making the Internet more secure. Team Cymru helps organizations identify
and eradicate problems in their networks, providing insight that
improves lives.”

	Tupelo

	A host-based forensic system (client and server) developed at the
University of Washington, based on the Honeynet Project “Manuka” system.

 8. License

8. License

Section author: Dave Dittrich (@davedittrich) <dittrich @ u.washington.edu>

Berkeley Three Clause License
=============================

Copyright (c) 2014 - 2017 University of Washington. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	AAA

 	Agile

 	
 	AMQP

 	AS

 	ASN

B

 	
 	Botnets System

C

 	
 	CI

 	CIDR

 	CIF

 	CIFglue

 	CIP

 	CISO

 	COA

 	
 	CONOPS

 	CRADA

 	cron

 	Cryptographic Hash

 	Cryptographic Hashing Algorithm

 	CSIRT

 	CSV

D

 	
 	DDoS

 	DIMS

 	
 	DNS

 	DoS

E

 	
 	Einstein 1

 	
 	EO

F

 	
 	Fusion Center

G

 	
 	Git

 	
 	GZIP

H

 	
 	HSPD

I

 	
 	ICT

 	IOC

 	
 	IP

 	IRC

J

 	
 	JSON

M

 	
 	MAPP

 	
 	MNS

 	MUTEX

N

 	
 	NCFTA

 	NetFlow

 	
 	NoSQL

 	NTP

O

 	
 	OODA

 	
 	Ops-Trust (ops-t)

P

 	
 	PPD

 	
 	PRISEM

R

 	
 	RBAC

 	Redis

 	
 	RESTful

 	RPC

S

 	
 	SCADA

 	SIEM

 	SiLKTools

 	SITREP

 	
 	SLTT

 	SOC

 	SoD

 	SSH

 	STIX

T

 	
 	TAXII

 	TCP

 	Team Cymru

 	
 	TLP

 	TTP

 	Tupelo

U

 	
 	UC

 	
 	UDP

W

 	
 	WCX

 To be integrated

To be integrated

ELK Overview

Ansible role

The Ansible roles to install, start, and run the ELK stack can be found in the
ansible-playbooks Git repo in ansible-playbooks/roles/ELK. In order for
this role to be run on a desktop VM (only the desktop side is running at the
moment; work is currently being done on the server side), the role ELK must be
listed in the vagrant_desktop_provision.yml file. Logstash requires Java, but
it maybe not be the Java that is installed via the jdk role. More testing
must be done with regards to this issue.

Elasticsearch is installed and started via the Ansible role. If all works
appropriately, nothing has to change with Elasticsearch itself. During
development, we do need to be able to clear the Elasticsearch database,
otherwise the data never clears. This will be discussed in more depth
later.

Logstash parsing

Logstash collects, parses, and outputs data via configuration files. Data can
be input in a number of ways, and currently we are using standard input. Data
can also be parsed a number of ways, and we are using the grok filter to match
events within the data sets to a given pattern. Logstash ships with many
built-in patterns, and we can also build are own. We have already done this to
parse three different sets of data. Once the data is parsed, and the timestamp
is fixed to match the event date and time rather than the time the event was
input to Logstash, then the data is output to Elasticsearch.

Data sets

Currently, we have three different sets of canned data. We are working on a
fourth, and soon we hope to move to live data. The fourth data set, output from
RPC scripts, is crucial to being able to parse live, streaming data. The data
sets can be found in two places. There is a sample repo called
dims-sample-data. The data sets can also be found on a VM provisioned with
the ELK Ansible role at /opt/dims/data/sample-data.

Warning

Use of “Team Cymru data” is deprecated. This is not time-series data
that Kibana is suited for analyzing. Rather, the Team Cymru whois
lookup service enriches data that contains just IP addresses. It was
not meant for this data to be treated the same as other time-series
event data.

[[http://www.team-cymru.org/About/][Team Cymru]] data file: ip-as.txt

UFW data file: floyd-kern.log

Websense data file: websense-samples.txt

Patterns

Patterns for the data can be found in two places: in the ansible-playbooks
repo at ansible-playbooks/roles/ELK/files, and on an ELK-provisioned
desktop VM at /opt/dims/patterns/.

Team CYMRU pattern: cymru

UFW pattern: ufw

Websense pattern: websense

Configuration files

There is one configuration file per data set to be input, parsed, and sent to
Elasticsearch. We are using a script to input each data set via standard input.
Theoretically, every data set could be processed via one configuration file and
by using a file input, but that isn’t how we’re running things right now.
Configuration files can be found in two places: in the ansible-playbooks
repo at ansible-playbooks/roles/ELK/files, and on an ELK-provisioned
desktop VM at /opt/dims/etc.

Team Cymru config file: logstash-cymru.conf

UFW config file: logstash-ufw.conf

Websense config file: logstash-websense.conf

Run scripts

We have helper scripts to load data into Logstash and send to Elasticsearch.
Essentially, the script pulls together the data set and runs the Logstash
command with the data as standard input. A log file for the script is made, and
if the debugging flag is turned on, output will be sent to it for later
analysis. When new patterns and configurations are being tested, the script can
limit the number of events to send to Logstash as well. The output files will
be found on an ELK-provisioned desktop VM at /vagrant/. The helper scripts
can be found in two places: in the ansible-playbooks repo at
ansible-playbooks/roles/ELK/files, and on an ELK-provisioned desktop VM at
/opt/dims/bin.

Team Cymru run script: demo.logstash.addcymru

UFW run script: demo.logstash.addufw

Websense run script: demo.logstash.addwebsense

To run a script with debugging output enabled from the command line type:

$ bash -x demo.logstash.addDATASET

...where DATASET is one of the following: cymru, ufw, or websense.

Please note, every time you run one of these scripts to load data, that data
will be added to Elasticsearch again. So it will seem like the data for that
data set has doubled when looking at it in Kibana. To avoid this, use the
helper script to wipe and restore the Elasticsearch database discussed near the
end of this page.

Kibana viewing

The Ansible role installs Kibana, changes the name of a dashboard file, and
installs and starts nginx to serve the Kibana web pages. It also sets the
homepage of the Firefox browser to Kibana so as soon as the browser is open, it
immediately goes to a page showing our data. There is a default dashboard which
can be reached at http://localhost/#/dashboard/file/default.json. This
default has a time frame set of a day previous to the current time. Most of our
data, right now, does not fall within that time frame because it is canned data
from months ago. This caused some problems in viewing the data that did get
sent all the way through to Kibana because it was outside of the time frame. We
have created a few custom dashboards so the data can be immediately viewed and
looked at. The Kibana page provides a time series graph as well as a breakdown
of the fields Logstash parsed from the event data.

Dashboards are fairly easily customizable. There is a lot that can be changed,
and most of it can be changed via the web app itself or by creating json
documents. There is a lot more that could be done with the dashboards than what
our custom dashboards currently do, but at least now they show the data
immediately, in the correct time frame, without our having to manually
manipulate the time frame. Point the ELK-provisioned desktop VM’s Firefox
browser to http://localhost/#/dashboard/file/[datasetdashboardfilename].
See below for the rest of the URLs. Also, the dashboard documents themselves
can be found in two places: in the ansible-playbooks repo at
ansible-playbooks/roles/ELK/files, and on an ELK-provisioned desktop VM at
/opt/kibana3/app/dashboards, with the same file names as for the URLs.

Warning

Use of “All_DIMS_Data” is deprecated. We need to move away from demos
using static “canned” datasets to processing a constant stream of live
data.

Dashboard file to show all DIMS data (currently 3 data sets); All_DIMS_Data.json

Dashboard file to show only Team Cymru data: =Team_CYMRU_Data.json=

Dashboard file to show only UFW data: =UFW_Data.json=

Dashboard file to show only Websense data: =Websense_Data.json=

Warning

Use of “All_DIMS_Data” is deprecated. We need to move away from demos
using static “canned” datasets to processing a constant stream of live
data.

When an ELK-provisioned desktop VM is immediately provisioned, it will be
pointed to the All_DIMS_Data.json page. This will show, in one frame, all
three data sets.

Clearing the Elasticsearch database to view different data sets in Kibana

Warning

We need to move away from demos using static “canned” datasets to processing
a constant stream of live data.

One issue we had with testing viewing data was that once data went to
Elasticsearch, it was persistent, even upon halting and bringing back up the
desktop VM. This is good news, except it made testing really difficult because
the VM would have to be built from scratch. We developed a script to clear the
database. This involved removing files associated with the nodes and indices
Elasticsearch uses to hold the data. Once these were cleared, but their
structure left in tact, then the data was gone from Elasticsearch and also
Kibana.

Running the wipe/restore Elasticsearch database script

Warning

We need to move away from demos using static “canned” datasets to processing
a constant stream of live data.

The script is called demo.logstash.deleteESDB. It can be used in two different
ways: to only clear the database and to clear the database as well as run the
Logstash helper script(s) to add any of the data back.

For more information, on the command line type:

$ bash demo.logstash.deleteESDB help

To only clear the database, on the command line type:

$ bash demo.logstash.deleteESDB

To clear and add data back, on the command line type:

$ bash demo.logstash.deleteESDB [dataset1 .. dataset3]

... where datasetN can be any of the following: cymru, ufw, and/or
websense. You can mix and match as much as you want. After the script
finishes, refresh the Kibana webpage. If you only add one data set back, point
the browser to the matching URL for that data set, and the page will load with
the data viewable. If you don’t point it to the matching URL or you send it to
the default dashboard, you might have to adjust the time frame to see the data.

Adjusting the time frame in Kibana

At the top of the Kibana page, the time frame is shown. If the page is pointed
to the default dashboard, it will say something like “a day ago to a few
seconds ago”. With live data, this might be helpful, but not so much with our
canned data at the moment. To change the time frame, click the arrow to the
right of the indicated time. This should drop down a menu. You can choose any
of the preset changes, or you can choose ‘Custom’. This will take you to a
pop-up kind of window, and you can reset the time frame to view the data in.

For current reference, the following are the general date/time of where the
data we can load to Kibana will be located.

Team Cymru time location: whenever the data set was sent through Logstash. This
means these events can be seen, if loaded, on the default dashboard, but it is
the only set. This data set has no times, so since we don’t alter the timestamp
while parsing the data, this set automatically gets the time it was given to
Logstash. Actually, all of the events parsed by Logstash get this time attached
to them, but if the events have dates/times, we will use that parsed data to
alter the Logstash timestamp so the events are mapped according to when they
occurred, rather than when they were input to Logstash. The Team Cymru Data
dashboard will also show the data appropriately.

UFW data time location: this set is spread out quite nicely from around
6/15/2014 to around 7/20/2014. This is a rough estimate. The UFW Data dashboard
will also show the data appropriately.

Websense time location: this set does have date/time data and we do alter the
Logstash timestamp with that data, but all of the events happened at basically
the same time. Change the time frame to between 2/3/2014 and 2/5/2014, and
you’ll see a pretty tall line appear. The Websense Data dashboard will also
show the data appropriately.

RPC Data use case/demo

When Megan left this off (~9/4/14), she was having trouble getting the amount
of data in the RPC file (dims-sample-data/rwfind_201302210110_18463) to
actually load. The Logstash pattern and configuration file worked when the
demo.logstash.addrpcflow script was in debug mode, only processing 10 lines
of data.

A repo branch was set up for this task. See ansible-playbooks repo, branch
RPCdataELK.

The process for this use case is the same as the other types of data described
above, you should just be able to run the =demo.logstash.addrpcflow= script.
Issues related to this still exist however: * You should run the
=demo.logstash.deleteESDB= first before testing because when the desktop VM is
provisioned right now, it loads all the data. * Megan manually cut the
=rwfind_201302210110_18463.txt= file down to just the relevant data, so that’s
one piece of the pipeline she didn’t get done. She’s not sure of a way for
Logstash parsing to truly ignore lines. She tried making a pattern that would
just accept anything that was “left over” when it didn’t match actual RPC logs,
but...those were being graphed/counted in Kibana. She’s pretty sure it’s just a
simple python script to knock off lines until they start having more than, but
she didn’t get that far.

Elasticsearch on a Server VM

Ansible Role

See Git repo ansible-playbooks, at ansible-playbooks/roles/essinstall.
This installs Elasticsearch in a manner that where nodes can be
started/stopped/added/deleted more flexibly than the way it runs on the desktop
VMs.

Basic usage

Once Elasticsearch is installed on a server VM, change directories to where it
was installed (should be /opt/elasticsearch-1.1.1).Make sure you have
sudo powers. Run bin/elasticsearch This will run through starting the
first node of a cluster. Unless the cluster name and node names are changed in
the elasticsearch configuration file (see
/opt/elasticsearch-1.1.1/config/elasticsearch.yml). This node is the master
node. Further configurations of shards and replica shards (for failover
purposes), among many other things, can be changed in the configuration file.
Once multiple VMs can be deployed at the same time, the discovery of nodes on a
cluster needs to be looked at closer and better understood. It does seem fairly
“automagical.”

Helpful Elasticsearch Server links

	Starting at the beginning, an empty cluster [http://www.elasticsearch.org/guide/en/elasticsearch/guide/current/_an_empty_cluster.html]

	Checking the health of a cluster [http://www.elasticsearch.org/guide/en/elasticsearch/guide/current/cluster-health.html]

	The Definitive Guide to Elasticsearch [http://www.elasticsearch.org/guide/en/elasticsearch/guide/current/index.html]

	Elastic Security: Deploying Logstash, ElasticSearch, Kibana “securely” on the Internet [http://blog.eslimasec.com/2014/05/elastic-security-deploying-logstash.html]

Related Links

	How to Apply Messaging to Cloud Apps with RabbitMQ, Node.js, Redis, and More [http://blog.pivotal.io/pivotal/products/how-to-apply-messaging-to-cloud-apps-with-rabbitmq-node-js-redis-and-more]

_static/comment-close.png

_static/comment-bright.png

_images/ops-trust-system-architecture.png
portaluw.ops-rustnet | named.uw.ops-rustnet

wiki.uw.ops-rustnet openid.uw.ops-rustnet

ops-trust Architecture Diagram

_images/DIMS-Trident-v1.png
iy

CIF

DIMS DIMS
WebApp CLI
| |
Trident Trident
WebApp CLI K [
D l AMQP
Trident | T - Q
Back End
Datastore DIMS
P Back End
Datastore

USSS Web Site

_static/UW-logo.png

_images/TippingPoint.png
20:29:36.695766 1P (_CTYSEA_].blackjack > | REDACTED.)i SYSLOG auth.notice, lemgth: 331
E..g....mu...d.. d.Fo8..<37580p 2 20:38:21 Charmin ALT,v6,201209027203821-0800, Charmin/[__CTYSEA] ,31247975,1,Pe
mit,Low, 95652164-4147-11e1-7dec-9c£3e46870da, "6890; IM: Twitter.com Access’,"6890: IM: Twitter.com Access” http,” ",
[__CTYSEA_),3610,199.59 180,201209027203711-0800,2, *,0, 1A-18, 7d13£caa-88bd-11d6-8595-0002b34b9580, Permit +
Notify,0

20129:42.229708 TP [__CTYSEA_) .blackjack > [REDACTED,)i SYSLOG auth.motice, length: 322

.3...3.F.....Jmm<37>8ep 2 20:38:27 Charmin ALT,v6,201209027203827-0800,Charmin/[_CTYSEA 0, 1,Pernit, Lo
W,b4£48B15-d2ba-1101-Tdec-9c£30468704a, "7620: ICP Flow Management (SMB)",°7620: TCP Flow Management (5MB),tcp,” ", [
_cTysea__),80,63.111 /56197, 201209027203827-0800, 1, *,0,38-3A, b1ec9080-9742-11de-b277-000799a20¢ fa, Trust, 0

20:29:43.609330 TP [__CTYSEA_) .blackjack > [REDACTED,)i SYSLOG auth.motice, length: 358
n..<37>Sep 2 20:38:28 Charmin BLX,v6,201209027203828-0800, Charmin/[__CTYSEA_] ,38059831,2,B1
~1le1-7dec-9c£3e46870da, "5784: Tunneling: Teamviewer Remote AcCess’,"S784: Tunneling: Teamviewer

", (__CTYSEA__),63414,176.10. /5938,201209027203055-0800, 1, *,0, 1A-18, JabBeea0-4331-11d6
-b47a-00a0¢995£27¢, Block + Notify,0
20:29:44.429645 TP (__CTYSEA_) .blackjack > [REDACTED, J: SYSLOG auth.motice, length: 360

Ee.ooooomi...do. JuFoo...pv.<3T580p 2 20:38:29 Charmin ALT,v6,201209027203829-0800, Charmin/[__CTYSEA] ,31247977,1,Pe
rmit, Low, 95052133-4147-11e1-7dec-9c£3e46870da, "6509; HITPS: GetDropbox.com HITPS Response”,"6509: HITPS: GetDropbox.c
om HITPS Response’,tcp,’ *,(__CTYSEA_),1868,199.47. 1443,201209021203527-0800,1," *,0,1A-18,7d13fcaa-88bd-114
6-859b-0002349580, Pormit + Notify,0

20:29:49.929651 TP (__CTYSEA_) .blackjack > [REDACTED,)5 SYSLOG auth.motice, length: 336
E..li...m....d...J.F.....X/.<3T>8ep 2 20:38:35 Charmin ALT,v6,201209027203835-0800, Charmin/[__CTYSEA] ,31247978,1,Pe
rmit,Low, 9504£9a5-147-1101-7dec-9c£3046870da, "4624: HITP: YouTube Site Access’,"4624: NTTP: YouTube Site Access” htt
B," ", [__CTYSEA_),1849,173.194. 1201209027203652-0800, 1, " *,0, 1A-18,7d13£Caa-88bd-1146-859-0002b34b9580, Perm

it + Nokify,0

20129:50.429861 TP [__CTYSEA) .blackjack > [REDACTED,)+ SYSLOG auth.motice, length: 377
E. WL ."<37>Sep 2 20:38:35 Charmin BLX,v6,20120902T203835-0800, Charmin/[_CTYSEA], 38059832,2,B1
0ck, Low, 95654769-d147-1101-Tdec-9c£3e46870da, " 10960 IN: Google GMail Chat SSL Commection Attempt’,”10960: IM: Googl
GMail Chat SSL Comnection Attempt’,tcp,” ,(__CTYSEA__),50148,173.194. . 443,201209027203835-0800,1," *,0,1A-18

/3abBoea0-4331-11d6-b47a-00a0c995£27, Block + Notify,O

20:29:51.609164 TP [__CTYSEA) .blackjack > [REDACTED____]: SYSLOG auth.notice, length: 339
Be.0ervimu.3.du dF Lo [<3T>80p 2 20138136 Charmin BLK,v6,201209027203836-0800, Charmin/(_CTYSE |, 38059833,2,51
‘ock, Low, 00000002-0002-0002-0002-000000011707, *11707: IN: MSN Web Messenger Login","11707: IM: WS Web Messenger Login
“/hitp," °,(__CTYSEA _],2483,64.4. 1,80,201209027203606-0800,1," -0, 1A-18, JaboeaO-4331-11d6-bi7a-00a0995£27¢ ,
Block + Notify,0

_static/comment.png

_images/WebSense.png
Feb 4 14:49:07 [CTYSEA_] Feb 4 14:51:42 [_CTYSEA] vendor=Websemse product=Security product version:
severity=7 category=1925 user=- src_host=[__CTYSEA__] src_port=0 dst_host=s7.addthis.com dst_ip=199.27. dst_po:
bytes_in=0 http_response=0 http method=GET http_content_type=- http_user_agent=- http_proxy_status_code=0 reason=- disposition=1027 policy=
role=3681 duration=0 url=http://s7.addthis.com/js/250/addthis_widget.js

Feb 4 14:49:07 [CTYSEA) Feb 4 14:51:42 [__CTYSEA_] vendor=Websense product=Security product_version=7.7.3 action=blocked
severity=7 category=29 user=- src_host=[__CTYSEA_] src_port=0 dst_host=www.googletagservices.com dst_ip=173.194. dst_port=80 bytes_
out=476 bytes_in=0 http response=0 http method=GET http_content_type=- http_user_agent=- http proxy_status_code=0 reason=- disposition=1025
policy=role-3127++ : role=3127 duration=0 url=http://www.googletagservices.com/tag/is/gpt.3s

Feb 4 14:49:07 [CTYSEA) Feb 4 14:51:42 [__CTYSEA_] vendor=Websense product=Security product_version=7.7.3 action=blocked
severity=7 category=29 user=- src_host=[__CTYSEA_] src_port=0 dst_host=e.yieldmanager.net dst_ip=206.190. dst_port=80 bytes_out=465
bytes_in=0 htto response=0 http method=GET http_content_type=- http_user_agent=- http_proxy_status_code=0 reason=- disposition=1025 policy

=role-3127 : role=3127 duration=0 url=http://e.yieldmanager.net/script.js

CTYSEA) Feb 4 14:51:42 [_CTYSEA_] vendor=Websense product=Security product_version=7.7.3 action=blocked

severity=7 category=29 user=- src_host=[__ CTYSEA_] src_port=0 dst_host=vast.bp3854818.btrll.com dst_ip=162.208 dst_port=80 bytes_

out=1027 bytes_in=0 http_response=0 http method=GET http_content_type=- http_user_agent=- http_proxy_status_code=0 reason=- disposition=102

5 policy=role-3127++ : role=3127 duration=0 url=http://vast.bp3854818.btrll.con/vast/38548187n=139155317 16br_w=300&br_h=250
formationweek. conkbr_conurl=httpt3AL2F2Fvideo. sekindo. comt2Fuploadst2Fyideot2Fcarol ine_wozniacki.mpd

Feb 4 14:49:08 [CTYSEA) Feb 4 14:51:42 [_CTYSEA_] vendor=Websense product=Security product_version=7.7.3 action=blocked
severity=7 category=1919 user=- src_host=[_CTYSEA_] src_port=0 dst_host=b.scorecardresearch.com dst_ip=209.124. i dst_port=80 bytes
_out=689 bytes_in=0 http response=0 http method=GET http_content_type=- http_user_agent=- http_proxy_status_code=0 reason=- disposition=102
7 policy=role-3127++ : role=3127 duration=0 url=http://b.scorecardresearch.com/b?c1=26c2=60350515c3=kca=ww.bbe. co. uki2Fnew
S%2F&CS=Ec6=6c15=Ens_t=13915543025476ns_c=windows-1252&c8=BBCH20News $ 20~$20Home&cT=httpt 3AE2F S 2Fwww. bbc .o . uk s 2Fews $ 2F&c9=

Feb 4 14:49:08 [CTYSEA] Feb 4 14:51:42 [__CTYSEA_] vendor=Websense product=Security product_version=7.7.3 action=blocked
severity=7 category=29 user=- src_host=[_CTYSEA_] src_port=0 dst_host-me-cdn.effectivemeasure.net dst_ip=209.124. i dst_port=80 byt
es_out=465 bytes_in=0 http response=0 http method=GET http_content_type=- http_user_agent=- http_proxy_status_code=0 reason=- disposition=1
025 policy=role-3127++ : role=3127 duration=0 url=http://me-cdn.effectivemeasure.net/em.js

Feb 4 14:49:08 [CTYSEA) Feb 4 14:51:42 [__CTYSEA_] vendor=Websense product=Security product_version=7.7.3 action=blocked
severity=7 category=29 user=- src_host=[__CTYSEA_] src_port=0 dst_host=pagead2.googlesyndication.com dst_ip=173.194. dst_port=80 by
tes_out=491 bytes_in=0 htto response=0 http method=GET http_content_type=- http_user_agent=- http_proxy_status_code=0 reason=- disposition=
1025 policy=role-3127++ : role=3127 duration=0 url=http://pagead2.googlesyndication.con/pagead/js/adsbygoogle.js

Feb 4 14:49:08 [CTYSEA) Feb 4 14:51:43 [__CTYSEA_] vendor=Websense product=Security product_version=7.7.3 action=blocked

severity=7 category=29 user=- src_host=[___CTYSEA__] src_port=0 dst_host=ad.doubleclick.net dst_ip=173.194 dst_port=80 bytes_out=1
211 bytes_in=0 http_response=0 http_method=GET http_content_type=- http_user_agent=- http_proxy_status_code=0 reason=- disposition=1025 pol
icy=role-1076++ -_base role=1076 duration=0 url=http://ad.doubleclick.net/N6663/adi/ccr.seattle.wa.s/kjr-fm;ccrpos=2001;tile
=2; cercountry=Us; corcontent1=1ive; ccrcontent2=1ive; corcontent 3=2569; env=prod; visitnun=53; seed=null; ccr format=CLASSICHITS ; cormarket=SEATTLE-

WA; group=cc; pageformat=CLASSICHITS ; pagemarket=None ;mt £ FPath=/doubleclick/;ccrlocalcontent=null; sourceaffiliate=null;g=null;a=null;rzip=nul
1;at=null;playedFrom=314;52=300x600, 300x250, 300x1050; cartnumber=896200; u=ccrpos *2001 1 £ile*2 | ccrcountry*US corcontent 1+ livel corcontent2+ Live
lecreontent3#*2569 lenv+prod | visitnum*53 | seed*null | cor format *CLASSICHITS | cermarket *SEATTLE-WA | group*cc | pageformat *CLASSICHITS | pagemarket *None

_static/minus.png

_images/Hybrid-Architecture.png
Containers

Guest

Host

SEES BEEs

"aeees "eee
SEEABBBERRREREES
SERRRRRRRRRRRES

Hybrid Containers
+ Virtual Machines

_images/example-crosscor-iff-friend.png
‘Mon Mar 10 18:27:51 PDT 2014",

"if£": "friend”,

“matching”: [
{"ips" ', "site":"SEA-CHILD"},
{"ip# ', "site":"SEA-CHILD"},
{"ip# "site":"PORTTAC"},
{"ip# ', "site":"SEA-CHILD"},
{"ip# "site":"KITSAP"},
{"ip#)", "site”:"KITSAR"},
{"ip# "site":"SEA-CHILD"},
{"ip# 3", "site”:"KITSAR"},
{"ip# "site":"SEA-CHILD"},
{"ip# ', "site”:"PORTOLY"},
{"ip# ', "site":"SEA-CHILD"},
{"ip# ', "site”:"BELLWA"},
{"ip# ', "site":"SEA-CHILD"},
{"ips" ', "site":"KITSAP"},
{"ip# "site":"SEA-CHILD"},
{"ip# "site":"CTYSEA"},
{"ip# 'site”:"CTYSEA"},
{"ip# "site":"BELLWA"},
{"ip# "site":"BELLWA"},

[

{"site”:"PORTOLY", "count”:"58", "percent”:"1.38"},
{"site”:"BELLWA","count”:"41", "percent”:"0.98"},
{"site”:"KITSAP","count”:"1119", "percent”:"26.61"},
{"site":"PORTTAC", "count”:"7", "percent”:"0.17"},
{"site":"KING", "count”:"5", "percent”:"0.12"},
{"site":"SEA-CHILD", "count”: "2971", "percent”:"70.65"},
{"site":"CTYSEA","count”:"4", "percent”:"0.10"},
{"site":"ALLSITES", "count”:"4205", "percent”: "100"}

_images/DIMS_PISCES_Collector_Node-v1.png
Docker Contalners

oven Amar
b [»| openven |4 Rapoiia
ovel
[«
INetow V5 A
OrPCARIL Netowvs | |
generate/caplure 4
:
Netfow V5 g
Syslog v
Etnemet NIC
Bomets [SYSI9 MozDef
Detectors Log Enrichment
Scrpt
ATK
||
Securty N R -
Device(s) Syslog Recelver Sysiog

DIMS-PISCES Collector Node

_images/PRISEM-data-volumes.png
ThreatCenter

LogCenter
SiLK records
CIF

Real-time
events

Historical logs

Network flows

Threat data
feeds

~40M records/30GB 48 hours

186,772 files/2.1TB 1 year
258,000 files/803GB 2+ years
4.9M archived records/22GB (NA)

_static/file.png

_images/Taxonomy.png
Global Deployment Category Host

(Host Candidate)
Levels

>
Variables Order of application

Cl
DEVOPS VPN
Artifacts
LOCAL App
Trident
OFS CIF___ | CiFtest]
AMQP
Cl
DEVOPS VPN
Artifacts
DIMS DEVELOP App
Trident
IR CIF

AMQP

_images/logstash-and-metrics.png
How Metrics Work

=l

Logs are shipped via
"a combinaton of

1

“d -

Pulls rom queues and Backend for ull lext search
indexes nto Elastic Search of enierprise wide 10g data

UBP and TP
Conte pinge
—_—]
Fapoy o
hediss
. e
s ¢

Filters Infra2

Parses logs ino logical fields

System vitals are generated ever
78 Seconds and shipped drectly o
graphie 1o be charlod

_static/down.png

_images/MozDef-flows.png
JSON over
HTTP (9200)

Index | o HTTPS (8201)

AMQP
or AMQPS
(5671)

Publishes

Log in JSON over
HTTP (8080)
or HTTPS (8443)

Publishes

Publishes

Log in JSON

AMQP
or AMQPS (5671)

Publishes Legen d

_static/up.png

nav.xhtml

 Table of Contents

 		DIMS Architecture Design v 2.10.0

 		Scope

 		Identification

 		Document overview

 		Referenced documents

 		System-wide design decisions

 		Background on Existing Core Components

 		Software Development Methodology

 		Use of Agile Development Methodology

 		Use of Continuous Integration

 		Use of Distributed Configuration Management

 		Use of Containerization

 		Use of Open Source components

 		Summary of High-Level System Architecture Delineation

 		DIMS architectural design

 		System Software Architecture

 		SIEM event correlation server

 		SIEM log archive server

 		Virtual machine management server

 		AMQP broker

 		Collective Intelligence Framework (CIF) server

 		ID management and authentication server

 		Domain name server

 		Virtual private network tunnel server(s)

 		Internal Communications Architecture

 		Concept of execution

 		Interface design

 		File and Database Design

 		Database Management System Files

 		Non-Database Management System Files

 		Human-Machine Interface

 		DIMS detailed design

 		Hardware Detailed Design

 		Software Detailed Design

 		Internal Communications Detailed Design

 		External Communications Detailed Design

 		Requirements traceability

 		Notes

 		Glossary of Terms

 		List of Acronyms

 		License

_static/ajax-loader.gif

_static/down-pressed.png

_images/Botnets-syslog.png
IIREERIREEEERREEERERRREEEEE

CIFList@8/SEA/SrcIP [__ ((_'.l.'!SBA
CIFList@8/SEAR/SrcIP [_
CIFList@8/SEA/SrcIP [_ (
CIFList@8/SER/SrcIP [__(
CIFList@8/SER/SrcIP [__(
CIFList@8/SER/SrcIP [__(
CIFList@8/SEA/SrcIP [__(
CIFList@8/SEA/SrcIP [__
CIFList@8/SEA/SrcIP [__ (
CIFList@8/SER/SrcIP [__(
CIFList@8/SER/SrcIP [__(
1ICU2List@9/SEA/SrcIP
ICU2List@9/SEA/SrcIP
ICU2List@9/SEA/SrcIP
1CU2List@9/SEA/SrcIP
ICU2List@9/SEA/SrcIP
1ICU2List@9/SEA/SrcIP

cr!szn

| S
| S—
| S
| S
| S—
| S—
+ ICU2List@9/SEA/SrcIP [__(
ICU2List@9/SER/SrcIP [__(mszn 1/WatchedDest 120.192.
| S
| S
| S—
| S—
[«
¢

ICU2List@9/SEA/SrcIP
1CU2List@9/SEA/SrcIP
ICU2List@9/SEA/SrcIp

: ZeusList@8/SEA/SrcIP

ICU2List@9/SEA/SrcIP

: ICU2List@9/SEA/SrcIP
CIFList@8/SEA/SrcIP [crzsni
CIFList@8/SEA/SrcIP [CTYSEA

1/WatchedDest 64.112.
__]/WatchedDest 199.181.
__]/WatchedDest 199.181.

A]/‘hh:haﬂnest 199.181.°
'SEA__] /WatchedDest 199.181.
'SEA__] /WatchedDest 199.181.
SEA__] /WatchedDest 199.181.
'SEA__] /WatchedDest 199.181.
71 /watchedDest 199.181.

,__]/WatchedDest 199.181..
___]/WatchedDest 199.181.

SEA__] /WatchedDest 120.192.
SEA__] /WatchedDest 120.192.
,llmtchedne-t 120.192.

]/WatchedDest 120.192.

:]I‘latd.mdnelt 120.192.
_|/uatammest 120.192.

__]/WatchedDest 120.192.

SEA__]/WatchedDest 120.192.
SEA__] /WatchedDest 120.192.
A]I‘latd.mﬂnelt 120.192.

__] /WatchedDest 64.202.
__]/WatchedDest 173.245.
__]/WatchedDest 173.245.
1/WatchedDest 84.22.

] /WatchedDest 84.22.

_images/cos-hw-deployment-v3.png
City of Seattle
Cisco FWSM

] (Firewall)
/J\.//Eﬂ Cos
" IGN 5 N Vestibule Internal
\\\ /_j Routers

|
etscreen® (syslog) '\ (netflow)
Firewall \ \ (syslog) h
slog \
A

\ ,I /
\ /
QW

Nitro Collector (SILK flows)
UMICH Botnets syste/n

L\:g

I CoS Deployment

\ UW APL

Nitro \ APL Deployment
ThreatCenter 4

Nitro
LogCenter

_images/Overview-DIMS-system.png
Data shared as
groups allow

US-CERT

10C,0s

Indicators from multiple
sources (e.g. Alienvault,

TrustGroup,
(ops-trust)

Shadowserver,

10C,,., Malwarebytes,
Mandiant,

10C etc.)

TrustGroup,
(Beadwindow,

TrustGroupy
(PRISEM re-
implementation)

Each trusted group
can have their own
DIMS backend &
Dashboard Ul

DIMS Dashboard

SEIM +
Botnets
detectors

PRISEM

_static/up-pressed.png

_images/run-services-with-docker.png
|

| B

‘3-tiered webapp running on a Core0S cluster

_images/DIMS-OPS.png
DIMS-OPS

Trident poral
DIMSWebApp
Backend Dana Store
VertcallLatera Info Sharing
DIMS Integrated User Tools

_images/HistoricEventLog.png
“CUSTON3": "Firewall,

“doscription’: “date=\"Feb 4 08:38:33 2014 UIC\", fac=f_generic proxy,area=a_proxy,typet_attack,pri=p_major,pid=2
544, 7u4d=0, euid=0, pgid=2544, 10g14=0, cd=tcpgsp, domain=Genx, edomain=Genx, hostname= SEA-CHILD. category=pol
icy_violation, event=ACL deny,attackip=87.139. Jattackburbmexternal, srcip=87.139. ,srcport=57833, srcburb=extern
al,dstip=(__SEA-CHILD_] ,dstport=25, dstburbminternal, protocol=6, service_nane=tcp2s,user_name=(null),auth method=(aull),rule
name=\"Deny AL1\",cache_hit~1,reason=\"1",

“device_vendor”: *SecureComputing Firewall®,

“dstip”: "(_SEA-CHILD_|

“timestamp”: 1391500829,

“usz"t mull
h
«
“CuSTON3"s "Firewall’,
“doscription”: "date=\"Feb 4 08:38:46 2014 UTC\",fac=t_generic_proxy,area=a _proxy,type=t_attack,pri=p major,pid2
541,7uid=0, ouid=0, pgid=2541, 1ogid=0, crd~tcpgsp, domain=Genx, edomain=Genx, hostaame={ sea-cuiLo, 1, category=pol
icy violation,cventeACL dony, attackip=210.186. /attackburbmextornal, srcip=210.186. /87Cport=3013, srcburbextor

nal,dstip=(_SEA-CHILD_] dstport=25,dstburbeinternal protocole6, service name=tcp2s,user_nane=(aull),auth method=(aull),rul
o_nane=\"Deny ALL\",cache_hit=1,reason=\"",
“dovice_vendor": “SecureComputing Firewall’,
istip"; *(__SEA-CHILD)"
“astport™: 25,
“event_name": "attack”,
“report_device': “ppxpiwolb”,

reip™s "210.186. .
“timestamp®: 1391500843,
“use"s null

b

«

“CusTONI”s "Pirevall’,

"doscription”s "2014/02/04 12:00141,63.115.40.56, [__PORTTAC_],0.0.0.0,0.0.0.0, Untrust-To-DNE189-SHTP,
/L3-Untrust, DNI-109, ethernet1/1,cthernet1/3,POT Sysiog Servers,2014/02/04 12:00:41,119244,1,56786,25,0,0,0x0, tcp, allow, 146
9,550,919,17,2014/02/04 12:00:11,0,any,0, 489843145,0x0, United States,United States,0,8,9",

“dovice_vendor': "PAN",

“dstip’s “(_PORTTAC_]",

“astport”: 25,

“event_nane": "allow’,

“report_device': 192

reip™s "63.115.¢

“timostamp®: 1391500847,
“usr®s mull

i

_images/Netflow-Architecture.png
NetFlow NetFlow Analysis

_images/PRISEM-amqp-flows.png
money.prisem.washington.edu

Imsearch_server

rwfind rwfind_server

SiLK

records anon_client

Botnets watchlists
Detectors (consumer)

pink.seattle.gov

floyd.prisem.washington.edu

CIF

Indicator DB

cifbulk_server

watchlists
(producer)

cifbulk_client

rwfind_client

anon_client

anon_server

rabbitmq.prisem.washington.edu

rwfind
output

anonymized
output

ipgrep

_images/DIMS-OPS-PISCES-DevOps.png
DIMS-DevOps

Source Code
Continuous Integration
Alteration+Deployment
Testing

DIMS-OPS

Trident portal
DIMS Web App
Backend Data Store
Vertical/Lateral Info Sharing
DIMS Integrated User Tools

DIMS-PISCES

Event Data Collection
Alerting
Correlation

_static/plus.png

_images/rabbitmq-bus-architecture.png
Log
Monitor

Log
Monitor

RPC

RPC
Client C

Client B

RPC
Client A

QueueC Logs
Direct Exchange Fanout Exchange Exchange

Queue

QueueA

RPC
Service B(1)

Service A(1)

RPC
Service B(n)

RPC
Service A(2)

RPC
RPC Service B(2)
Service A(n)
Data Processing Services

Data Processing Services
Virtual Machines

_images/hadoop-monitoring-arch.png
VM Hadoop n
‘Docker container

#

‘Docker container

collectd VM Monitoring k

. Docker container

e

Volume share

_images/DIMS-Trident-stack-v1.png
DIMS

Pitchfork

Trident AMQP

Postgresal

Filesystem

Farsight Third-party Open Source

DIMS Operating System

_images/hardware_layout_diagram.png
Slot

Leciveveilon)

48
47
46
45
44
43
42(; . 20,0724 Swit:
41 ‘COS: (VLAN): Switch ! ; ©
401: D-Link: 28TC Switch:
39| I
38 Stirling
37 (VM server)
36 Floyd (CIF, Sphynx)
35[i:i:i: it D-Linki28SE Switch: itk
34 Wellington
33 (VM server)
32 Dogs (NAS)
31 (Backup server)
30 Echoes (old Zion/Threat Center)
29 (Core0S cluster nodel)
28 Breathe (old Money/Log Center)
27 (Core0S cluster node2)
26
25
24}
23
22
21
20
19
18
17 Scupie
16’,’//////// .ZU)-////////
15
13 Zion
12 (Threat Center)
11 Money

(Log Center)

Dell R720
(VM Server)
Dell R510 #2

(Core0S cluster node3)

-
HNWAUION OO

_images/ops-trust-memberpage.png
OPERATIONS SECURITY TR

davedittrich(logout) Member Information for aavedittricn (Dave Dittrich)
Main Ops-Trust Group (change)
J daveditiich
Members D:
Airports Email dittrich@u.vashington.edu
addr:
Nominate

Full name: Dave Ditiich
Vouch Cfi Panel
Affliation: @apl washington.edu

Mailing Lists

PGP Key: DI1SEEQ79 \
PGP keys

Entered: 2009-07-06 20:14:21 UTC
Emergency contacts
Emergency cor Last 2013-05-20 21:03:22 UTC
List Vouches (CSV) Activiy:
Wiki Inactive 00:00:00
- for:
Edit profile U
e Status: active
S Timezone US/Pacific

info:

SMS info:

M. info:

Phone

info:

Postal

info:

_images/VM-Architecture.png
"4 -
App2 App3 App4 App5
. J
Bins/ | Bins/ | Bins/ | Bins/
Libs Libs Libs Libs
Ubuntu | Ubuntu | Ubuntu
RHEL 14.04.4 | 14.04.4 | 14.044
LTS LTS LTS

Ubuntu 14.04.4 LTS

Virtual Machines

_images/Botnets-Architecture.png
/ Botnets High-Level System Architecture

Netflow Sources (Routers or Packet Taps)

1@

ZENOSS BOX

Botnets Log File
BOTNETS MACHINE Merit Network, Inc.

\ J.Czyz - jake@merit.edu 2010-03-22

_images/prisem-system-architecture-v1.png
Data Collectve
Processing Intelligence Network Flow

Services Framework History

Browser-based Vendor Portal

Dashboard

PRISEM

OpenVeN

SIEM Event
Front End Logs

Command Line
Unux

PRISEM Architecture Diagram

_images/ExampleNetworkFlowReport.png
©® O O rwfind_201209031849_3855.txt rwfind_201209031849_3855_anon.txt - Inbox - dittrich@apl.washington.edu)

o tag - o O ek rier

| et s [Resly | (4 Reply Al + (= forward | (@ Archive | (24 Junk | (© Delete
| rwiind_201209031849_3855.0xt rwfind_201209031849_3855_anon.xt Gaspm
dittrich@uw.edui Other Actions

rufind - Mon, 03 Sep 2012 18:49:54 0700

Found 51 flows over the last 1 days to/from the following:

120.204.202.200
173.245.61.152
\
1P| dIP|sPort|dPort|pro| packets| bytes| sTine|
‘ CTYSEA_I| 173.245.61.152| 2269| 80| 6| 13| 1058|2012/09/02705: 04:43.733|
| 173.245.61.152] [_CTYSEA_]| 80| 2269| 6] 21| 17171]2012/09/02T05:04:43.736 |
173.245.61.152| [CTYseA_1| 80| 2269] 6| 1] 45]2012/09/02705:05:30. 194 |
[__CTYSEA 1| 173.245.61.152| 2269| 80| 6] 2| 92|2012/09/02705: 05:30. 198
[__CTYSEA_] |120.204.202.200|54643| 53] 17| 1] 57|2012/09/02T06: 45:26. 045 |
| [CTYSEA 1120.204,202,200|55415| 53| 17 1] 60]2012/09/02T06: 45:26. 173 |
120.204.202.200] [_CTYSEA]| 53|54643| 17 1] 103|2012/09/02706: 45:26. 236 |
120.204.202.200] [_CTYSEA]| 53]55415] 17] 1] 76]2012/09/02T06: 45:26. 363 |
| L_CTYSEA_1]120.204.202.200|50050| 53| 17| 1] 60]2012/09/02722:20:07.934|
120.204.202.200] [_CTYSEA]| 53]50050| 17 1] 76]2012/09/02722:20:08.125 |
[_CTYSEA 1]120.204.202.200]43654| 53| 17| 1] 71]2012/09/02722:20:08. 446 |
120.204.202.200] [CTYSEA]| 53]43654| 17 1] 76]2012/09/02T22:20:08.636 |
| [__CTYSEA__]| 173.245.61.152| 3402| 80| 6] a4 7266|2012/09/02723:55:19. 048
173.245.61.152| [__CTYSeA__]| 80| 3402| 6| 71| 70960|2012/09/02123:55:19. 048]
| 173.245.61.152] [__CTYSEA__1| 80| 3407| 6] 37] 35058]2012/09/02123:55:19.237 |
| [__CTYSEA__]| 173.245.61.152| 3404| 80| 6] 3 5887|2012/09/02723:55:19. 240 |
[__CTYSEA_1| 173.245.61.152| 3405 80| 6] 23] 5110|2012/09/02723:55:19. 240 |
| 173.245.61.152] [__CTYSEA__]| 80| 3404| 6] 56| 49912|2012/09/02123:55:19.240]
173.245.61.152| [__CTYSeA__1| 8| 3485| 6| 33| 29993]2012/09/02123:55:19.240
[__CTYSEA_]| 173.245.61.152| 3403| 80| 6] a1 6294|2012/09/02723:55:19. 240 |
173.245.61.152| [__CTYSeA__]| 8| 3403| 6| 64] 62932]2012/09/02123:55:19.240
173.245.61.152| [__CTYSEA_1| 80| 3406] 6| 38| 39698|2012/09/02123:55:19.240
| [__CTYSEA__]| 173.245.61.152| 3406| 80| 6] 27| 48272012/09/62T23:55:19.240|
[1] 173.245.61.152| 3407| 80| 6| 2] 5113|2012/09/02723:55:19. 240 |
I 1] 173.245.61.152| 3402| 80| 6| a4 7266|2012/09/02723:55:19.257 |
I __1| 173.245.61.152| 3404] 80| 6| 3 5887|2012/09/02723:55:19. 385 |
o __1] 173.245.61.152| 3405| 80| 6| 23] 5110|2012/09/02723:55:19. 385 |
I __1| 173.245.61.152| 3403| 80| 6| a1 6294|2012/09/02723:55:19. 385 |
L 1| 173.245.61.152| 3406] 80| 6| 27| 48272012/09/62T23:55:19.385|
\

@ 2 attachments 125 k8

Find: (Q Y (Rext [Previous

S Highighial) [Match case

_images/Container-Architecture.png
Containers

Host

- |
seaee B o
..‘.....CC.‘Q....Cl.l...........'...........

Containers

_images/dims-system-architecture-v2.png
Collective
Data Processing DataProcessing nisligence etk Fow
Services Services Framewsrk (GIF) story.
AMGP Broker ‘
Browser-vased
Dashboard
DIMS Front-End
+ Foswiki
OpenveN

SIEM Event
Front End Logs

Command Line
Unux

ops-trust+DIMS Architecture Diagram

_images/stix-dataflows-v1.png
Data shared:
0 10Cs + Observables (STIX, JSON)
o Course of Action (PDF, STIX?)
o Situational Awareness Reports
(PDF + STIX, JSON)
o Incident Reports (PDF + STIX, JSON)

PRISEM-like
regional

Anonymized
I fitered

Anonymized
I fitered

Anonymizedfittered

ops-trust
Community

_images/CiscoFWSM.png
REDACTED_ 1> 0 REDACTED 1: SYSLOG local0.info, lemgth: 201
3<13&>Sep 02 2012 20: $FWSM-6-302015: Built outbound UDP connection 144987496152747418 fo
CTYSEA_]/58029 ([__CTYSEA_]/58029) to fusion-connect:(__ CTYSEA_]/161 ([__CTYSEA_]/161)

144.214069 IP [REDACTED, 151 REDACTED 1: SYSLOG local0.info, length: 175
[oernd..d6..0.F, <138>Sep 02 2012 20 $FWSM-6-302015: Built inbound UDP connection O for inside:[__CTYSE
A__1/58030 ([__CTYSEA_]/58030) to inside:[__ CTYSEA /161 ([__CTYSEA_]1/161)

20:29:47.655727 1P [REDACTED, 151 REDACTED, 1: SYSLOG locall.info, length: 155
E...[.....d..06..0.F......y.<134>Sep 02 2012 20:38:32: IFWSM-6-302016: Teardown UDP comnection O for inside:[__ CTYSEA]/
57747 to inside:[__CTYSEA_]/161 duration 0:02:03 bytes 389

8.644953 IP [REDACTED, 151 REDACTED 1: SYSLOG local0.info, length: 201

aw.36..3.F. m<13a>Sep 02 2012 20:. $FWSM-6-302015: Built outbound UDP connection 144987496152747419 fo
CTYSEA_]/58043 ([__CTYSEA__]/58043) to fusion-connect:(__ CTYSEA_]/161 ([__CTYSEA_]/161)

:52.641507 1P [REDACTED, 151 REDACTED 1: SYSLOG local0.info, length: 175
[(+rnd..36..3.F, <138>Sep 02 2012 20 $FWSM-6-302015: Built inbound UDP connection O for inside:[__CTYSE
A__1/58052 ([__CTYSEA_]/58052) to inside:[__ CTYSEA /161 ([__CTYSEA_1/161)

20:29:53.064858 IP [REDACTED, 151 REDACTED, 1: SYSLOG local.warning, length: 144
E...[4....d..06..0.F......).<132>Sep 02 2012 20:38:37: IFWSM-4-106023: Deny udp src ign:[__CTYSEA_ /123 dst inside:
TISEA_]/123 by access-group "acl_ign" [0x0, 0x0]

3.606129 IP [REDACTED, 151 'REDACTED, 1: SYSLOG local0.info, length: 196
dY.36..3.F. <138>Sep 02 2012 20 AFWSM-6-106100: access-list acl_inside permitted tcp inside/[__ CTY
SEA__](6967) -> parks-video-server/[__CTYSEA_](1981) hit-cnt 1 (first hit) [Ox76a8922e, Ox74flebd3]

:57.174360 1P [REDACTED, 151 'REDACTED, 1: SYSLOG local0.info, length: 197
[F....dM.J6..3.F......1.<134>Sep 02 2012 20: $FWSM-6-106100: access-list acl_inside permitted tcp inside/[__ CTY
SEA__](14780) -> parks-video-server/[_CTYSEA_](1961) hit-cnt 1 (first hit) [0x76a8922e, Ox74flebd3]

_images/Netscreen.png
20:29:36.463626 P (__CTISEA_).16672 > | _REDACTED_)1 SYSLOG localO.notice, length: 408
E. =.1%.3.{.J.FA1<133>nfu-cos-1: NetScreen device id=nfw-cos-1 [Root]system-notification-00257(traffic):
start_time="2012-09-02 20:42:57" duration=0 policy_1d=299868 service=dns proto=1] src zone=Untrust dst zono=DMZ actio
n=Permit sent=0 rcvd=0 srce(___KING___| dst=(__CTYSER__) src_port=43698 dst_ports3 src-xlated ip=[____KING.

1 port=43698 dst-xlated ip=[___CTYSEA_] port=53 session_id=482107 reason-Creation.

20:29:36.468020 TP [__CTYSER_].16672 > [REDACTED,): SYSLOG localo.notice, length: 312
E..T. .3.{.J.FA ...Q..<133>nfu-cos-1: NetScreen device idwnfw-cos-1 [Root]system-notification-00257 (traffic):
start_time="2012-09-02 20:42:57" duration=0 policy id=997870 Service=proto:dl/port:l proto=dl src zone=Trust dst zone
=Untrust action=Deny sent=0 rcvd=82 sro=(_ CTYSER] dst=192.88 session id=0 reason=Traffic Denied.

e =.13.3.(.3.FA<133>nfu-cos-1: NetScreen device_id=nfw-cos-1 [Root]system-notification-00257(traffic):
start_tine="2012-09-02 20:42:57" duration=0 policy_id=997426 service-tcp/porti2179 proto=6 src zone=Untrust dst zone=
DMZ action=Permit sent=0 rcvd=0 src=168.62.(| dst=[__CTYSEA] src_port=1152 dst_port=2179 src-xlated ip=168.62.
- port-1152 dst-xlated ip=[___CTYSEA) port-2179 session id=469208 reason-Creation.

20:29136.541553 1P (__CTYSEA_].16672 > (____REDACTED __): SYSL0G local0.notice, length: 407
E 16.3.{.J.FA"<133>nfu-cos-1: NetScroen dovice idnfw-cos-1 [Root]system-notification-00257 (tratfic):
start_time="2012-09-02 20142:57" duration=0 policy_id=997659 service-https proto= src zoneDM dst sone~Trust action
“Permit sent=0 rcvd~0 sro=|__ CTYSEA] dst=(__CTYSEA__] src_port=53928 dst _port=443 src-xlated ip=(__ CTYSEA__
1 port=53928 dst-xlated ip={__CTYSEA_] portii3 session 1d=473290 reason-Creation.

20:29:36.616165 IP [_CTYSEA].16672 > (____REDACTED____): SYSLOG local0.notice, length: 403
E. 1C.3.{.J.FA3.<133>nfu-cos-1; NetScreen device id-nfw-cos-1 [Root]system-notification-00257(traffic):
start_time="2012-09-02 20:42:57" duration=0 policy_d=997426 service=http proto=6 src zono=Untrust dst zono=DMZ actio
n=Permit sent=0 revd=0 src=65.52.) dst=(__CTYSEM_) src_port=62859 dst_port=80 src-xlated ip=65.52. por
62859 dst-xlated ip=(__ CTYSEA__] port=g0 session_id=435525 reason=Creation.

20:29:36.631680 TP [_CTYSER_].16672 > [REDACTED,)i SYSLOG localo.notice, length: 406
E. 1<.3.{.J.FA<I33>nfu-cos-1; NetScreen device idwnfu-cos-1 [Root]system-notification-00257(traffic):
start_time="2012-09-02 20:42:57" duration=0 policy id=299868 service=dns proto=1] Src zone=Untrust dst zone=DMZ actio
n=Permit sent=0 revde0 srce192.221. dste(__CTYSEA] src_port=61396 dst_port=53 src-xlated ip=192.221.
Port=61396 dst-xlated ip=[___CTYSEA__] port=53 session_id=490374 reason=Creation.

crysea).16672 > REDACTED,)+ SYSLOG localo.notice, length: 403
=.15.9.(-J.FAV.<133>nfw-cos-1; NetScroen dovice id=nfw-cos-1 [Root]system-notification-00257(traffic):
start_tine="2012-09-02 20:42:57" duration=0 policy_id=997663 service-smtp (tcp) proto=6 src zome=Untrust dst zome=Tru
st action-Permit sent=0 rcvd=0 src=6d.18 st=[__CTYSEA_) src_port=56676 dst_port=25 src-xlated ip=6d.1 »
ort=56676 dst-xlated ip=(__CTYSEA_] port=25 session_id=453658 reason=Creation.

_images/alvaro-1.png
Upstream

Federation Links

[)

Upstream

Upstream

Downstream

_images/USSS-Pilot-Deployment.png
PRISEM Participating
Municipalities/Ports

DIMS-OPS

ops-trust portal
FosWiki
DIMS Web App
Backend Data Store
Vertical/Lateral Info Sharing
DIMS Integrated User Tools

U.S. Secret Service

DIMS-PISCES

Event Data Collection
Alerting
Correlation

DIMS-OPS

ops-trust portal
FosWiki
DIMS Web App
Backend Data Store
Vertical/Lateral Info Sharing
DIMS Integrated User Tools

_images/Clusterized-Containers-Architecture.png
App1

App2 App3

App3

Bins/
Libs

Bins/
Libs

Docker Engine

etcd

Bins/
Libs

etcd

App2 App3 App4

App5

Bins/
Libs

